Эйнштейн. Теория относительности. Пространство – это вопрос времени | страница 33
Оба мяча преодолевают одно и то же расстояние (L'/2) с одной и той же скоростью. Если все три наблюдателя сравнят свои замеры и разности t'>2 – t'>0 и t'>1 – t'>0, они получат одинаковый результат. Заключение: мячи достигли стен в один и тот же момент времени.
РИС.3
РИС. 4
РИС. 5
Версия наблюдателей на причале
Для того чтобы воспроизвести эксперимент, который только что был проведен в трюме, прибегнем к несколько искусственному приему, который, однако, будет полностью ясен при разборе второй, относительной, версии этого опыта. Мы расположим вдоль причала ряд наблюдателей с секундомерами, и каждый будет фиксировать момент события, происходящего точно напротив него (рисунок 6).
РИС. 6
РИС. 7
РИС. 8
Корабль движется вдоль причала со скоростью u. Пусть С – наблюдатель, находящийся напротив механизма в момент, когда тот выбрасывает мячи. Время, отмеченное им, будет t>0. А и В – это наблюдатели, фиксирующие момент удара мячей о стены. Они отметят моменты времени t>1 и t>2 (рисунок 7).
Движение корабля нарушает симметрию между расстояниями, которые пролетает левый мяч (i) и правый мяч (d). До момента выстрела наблюдатели видят, что выстреливающая машина двигается со скоростью и направо. В определенный момент механизм выстреливает мячи в противоположные стороны, оба двигаются со скоростью u. Наблюдатели на причале видят, что мяч i двигается налево со скоростью v – и, а мяч d двигается направо со скоростью v – u. С их точки зрения мяч i летит медленнее, a d – быстрее. Для наблюдателей А' и В' они летели одинаково быстро. Повлияет ли эта разница скоростей на время, за которое каждый из мячей долетит до стены? Нет, потому что левая стена будет двигаться навстречу мячу i со скоростью v, а правая будет с той же скоростью отдаляться от мяча d (рисунок 8).
Эти эффекты компенсируют друг друга: медленно летящий мяч преодолевает более короткое расстояние, а быстрый – более длинное. В результате оба долетают каждый до своей стены одновременно. Если наблюдатели A, В и С соберутся вместе и сравнят свои замеры времени, получится, что разности t>2 – t>0 и t>1 – t>0 равны между собой. События происходят одновременно.
Заменим метательную машину и мячи фонарем с двумя лампочками. При включении он посылает два световых луча (электромагнитное излучение): один направо, другой налево.