Сознание вне мозга, или Многомерность живого | страница 33
Еще один очевидный аргумент против наличия наследственной информации в молекулярных генах, это тот простой факт, что их роль одинакова как в одноклеточных, так и в многоклеточных организмах. Причем, понятно, что одноклеточные возникли раньше, и роль генов в них заключалась в обслуживании только внутриклеточных процессов, так как многоклеточных организмов еще не было. Почему же роль генов должна измениться, когда возник многоклеточный организм? Понятно, что когда клетки объединились в один организм, основной процесс производства белков у них сохранился, и молекулярные машины: рибосомы, РНК-полимеразы, ДНК-полимеразы и т. п., – остались, по сути, теми же. И хромосомы, с встроенными в них генами, играли в нем ту же роль, что и в одноклеточных: служить шаблонами в начальном этапе производства белков. Некоторое различие проявилось лишь в том, что клетки стали разных типов, и дополнительно возникла функция синтеза белков, которые используются в других клетках организма. Вполне логично предположить, что роль генов осталась той же, что и в одноклеточных организмах, где гены не могли нести никакой ответственности за «морфологическое строение, рост, развитие, обмен веществ, психический склад» организма, так как самого организма еще не было даже в проекте.
Любопытно, что у человека около тридцати тысяч молекулярных генов, а у некоторых простейших организмов число генов сравнимо или даже больше, чем у человека. Например, у кольчатого червя, состоящего всего из 979 клеток, также около тридцати тысяч генов. Как же так, и для управления простейшим организмом червя, и для управления сложнейшим организмом человека используются примерно одинаковое число генов? Ответ понятен, молекулярные гены тут не причем.
Да и внутри клетки молекулярные гены, конечно, являются необходимым элементом, как и многие другие ее части, но не играют какой-то выдающейся, определяющей роли. Например, относительно недавно был открыт альтернативный сплайсинг – процесс, позволяющий на основе одного гена производить несколько информационных РНК и, соответственно, белков. В животных клетках большинство генов содержат экзоны и интроны. В процессе обычного сплайсинга интроны удаляются из РНК, а оставшиеся экзоны сшиваются в непрерывную последовательность и направляются на рибосомы для формирования по ней белковой цепочки. А в процессе альтернативного сплайсинга экзоны могут выборочно включаться в состав конечной РНК, то есть экзон одного варианта сплайсинга может оказаться интроном в альтернативном пути. Это значит, что решение о том, какой белок производить принимается не в процессе копирования «букв» гена, а уже в зоне работы молекулярных машин сплайсосом. Варианты альтернативного сплайсинга могут приводить к образованию различных изоформ одного и того же белка, а иногда позволяют кодировать белки даже с антагонистическими функциями. То есть в результате получается, что ген даже не определяет конечный вид белка.