Искатель, 2013 № 10 | страница 23



Так был сформулирован парадокс, который стал несколько месяцев спустя, после публикации статьи Шведера, главной аксиомой инфинитного исчисления — чем-то вроде первого постулата Евклида о том, что кратчайшим расстоянием между двумя точками является прямая линия.

Но для меня важнее были не постулаты инфинитного исчисления, а физическое приложение — все-таки я ощущал себя не чистым математиком, а скорее матфизиком, при том, что физику тогда знал недостаточно: если бы мне пришлось сдавать экзамен по квантам, который я легко одолел два года спустя, то вышел бы я из аудитории с твердой тройкой, не больше.

Почему сейчас вспоминается тот день? Память плохо поддается контролю сознанием. Правда, сейчас я умею управлять выплесками памяти гораздо лучше, чем прежде, и тому наверняка есть психологическое обоснование, которое, впрочем, мне совершенно не интересно. Воспоминание нужно прожить и успокоить, как взбрыкнувшую лошадь, тогда оно больше не вернется, во всяком случае, не добавит ненужных волнений.

В тот день… То, что мне пришло тогда в голову, и стало формулировкой третьей теоремы инфинитного исчисления, теоремы Волкова, как ее стали называть. Это была подсознательная, интуитивная догадка. Потом тому же Шведеру (а не мне, я тогда слишком плохо знал физику) удалось показать, что моя догадка была прямым следствием второй теоремы.

Я всего лишь соотнес идею бесконечного числа бесконечно разнообразных многомирий с квантово-механическим принципом неопределенности. В чисто математическом смысле в бесконечном многообразии всегда (это понятно даже интуитивно, но Шведер доказал на основе первого постулата) можно найти бесконечное число многомирий и, тем более, счетное число вселенных, полностью тождественных друг другу. Миров, описываемых одной и той же бесконечно сложной волновой функцией, но инфинитный анализ уже позволял сравнивать бесконечности и выбирать среди них идентичные.

Чистая математика. В физике существует принцип неопределенности, свою роль он играет и в многомириях, как же без него? И если применить этот принцип к инфинитному анализу, то вывод очевиден: два мира (многомирия, многомирия многомирий и так далее) можно назвать тождественными или идентичными, если они отличаются друг от друга на величину, находящуюся в пределах физического соотношения неопределенности.

Говоря популярно (мне много раз пришлось говорить именно популярно, поскольку я выступал с лекциями в Питере, Мюнхене и здесь, в Оксфорде), физика не запрещает перемещений материального тела (живого и разумного, в том числе) в идентичную реальность, поскольку эти миры математически тавтологичны. Нет разницы, в каком из них находится выбранный объект. Это все равно что рассматривать бесконечное число равных треугольников или других геометрических фигур. Меняйте их местами как хотите, мироздание в результате останется тем же самым. Формально. «На самом деле» реальности все же отличаются друг от друга на величину квантовой неопределенности.