Знание-сила, 1999 № 01 (859) | страница 6



Мы мало знаем о нем, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царем в геометрии и даже за ее пределами – будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы; первая модель Вселенной из концентрических сфер, несущих планеты и звезды, с Землею в центре; наконец, первая республика ученых в италийском городе Кротоне – таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант – скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант еще не владел позиционной системой записи больших чисел; но он знал, что такое отрицательные числа и, наверное, провел немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звезд, отрезков или многогранников. Главное занятие ученых в этом мире – решение уравнений; настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X3 + Y3 = Z3 ?

Найти такое решение Диофанту не удалось; его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешенных задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему – молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков – вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Кто только и о чем не фантазировал на рубеже XVI – XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазер Декарт не любил длинных расчетов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях – и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X³ + Y³ = Z³ , выглядит сложнее; ее геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.