Знание-сила, 1999 № 01 (859) | страница 16



В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий ученого Базарова и не решился их воспеть, но это вскоре сделали ученый Иван Сеченов и просвещенный журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание – сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции – и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полет Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Еше раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? – ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоуменный вопрос: «А зачем это нужно?» – последовал четкий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придется развить для решения такой проблемы – и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог ее не заметить. В таком случае кумиром математиков стала бы какая-нибудь другая задача – возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли четное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами я и е? Эти три проблемы до сих пор не решены, хотя в XX веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Еще в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения – хотя бы потому, что арсенал математических средств физики неуклонно растет, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времен Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов; другая (новорожденная) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.