Знание-сила, 1999 № 01 (859) | страница 15



Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и четкой задаче – без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе – и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать свое поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать свое доказательство – с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был все-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую – благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлекся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог – да и ни к чему это стало. Он провел необходимое рассуждение в рамках теории Ивасава, и все получилось за полчаса! Так – с опозданием в один год – была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала; годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трехсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдет в учебники теории чисел.

Подводя итог трехвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами – длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате – вроде достижения Северного полюса Земли или полета на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения – еще в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта- хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за его лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули – и рядом с ними встала наука.