Знание-сила, 1999 № 01 (859) | страница 10



Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее ее природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей все новых жертв в форме новых сложных теорий. Не удивительно, что к началу XX века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но ее соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры – Пуанкаре и Гильберт – демонстративно сторонились этой темы. В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трех важнейших проблем, стоящих перед математикой XX века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намек был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тоша в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями – значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою фуппу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путем действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А еше на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y