Великие противостояния в науке. Десять самых захватывающих диспутов | страница 29
Безукоризненная репутация Валлиса отнюдь не означала, что он всегда и во всем стремился к истине. К примеру, в одном из разделов его «Трактата по алгебре», изданного в 1685 году, Валлис, по мнению историка науки И. Бернара Коэна, «явно искажает факты, выдавая желаемое за действительное, когда утверждает, что все великие математические теории XVII века были созданы англичанами, а Декарт скомпилировал теорию Гарриота»>{46}.
Однако никто не станет спорить, что Валлис отличался широким кругозором и высоким интеллектом. Он, как паук, затаился в ожидании, когда ненавистный ему Гоббс угодит в его сети. И он дождался этого момента, когда Гоббс в 1655 году вернулся к написанию своей трилогии. Он издал на латыни трактат De Corpore («О теле»), который по первоначальному замыслу должен был стать первой частью трилогии. Там в главе 20 Гоббс решает задачу о квадратуре круга, над которой геометры ломали голову более трех тысяч лет.
Математическая задача
Суть задачи в следующем. С помощью линейки проведите линию. Затем поставьте острие циркуля на крайнюю точку полученного отрезка и, используя его в качестве радиуса, нарисуйте окружность. Следующий шаг: с помощью лишь циркуля и линейки начертить квадрат, имеющий такую же площадь, что и окружность.
Еще одна причуда ученых? Вовсе нет. Например, древние греки представляли круг идеальной фигурой. А решить задачу о квадратуре круга стремились еще древние египтяне, когда пытались разрешить свои бытовые проблемы. В Древнем Египте геометрию использовали в практических целях — для измерения участков земли, границы которых постоянно размывались разливом реки Нил. Само слово геометрия происходит от греческих слов gē (земля) и metrein (мерить). Когда границы имеют прямые линии, измерять площади участков довольно легко. Но совсем не просто было измерять участки с кривыми границами, что встречалось гораздо чаще. Так что было бы гораздо проще найти способ в обоих случаях применять технику измерения площадей с прямыми границами.
Для греческих математиков любая трудноразрешимая задача была особенно интересна, тем более что многие более простые задачи были уже решены. С помощью простого геометрического метода и вышеупомянутых линейки и циркуля в круг вписывался треугольник. Затем количество сторон вписанной фигуры удваивалось, снова и снова. Далее строили аналогичную, но уже описанную вокруг нашего круга фигуру. При увеличении количества сторон обоих многоугольников они все больше походили на круги. В конце концов исходный круг оказывался практически равен внешнему и внутреннему по отношению к нему кругам.