Знание-сила, 2000 № 12 (882) | страница 15





Подобно Ньютону, Гильберт не был вундеркиндом. Он просто находил огромное удовольствие в размышлениях о науке, постоянно думал о ней и старался решать новые красивые задачи из всех областей математики. Для начала Кляйн решил превратить «вольного охотника» в универсального ученого. По его инициативе Германское математическое общество поручило Гильберту и его друзьям составить доклад о современном состоянии теории чисел – через сто лет после того, как ее преобразил Гаусс. Этот труд вылился в учебник объемом 400 страниц. По ходу дела Гильберт открыл уйму новых фактов, ввел несколько необходимых понятий, доказал ряд давних гипотез, нашел много новых трудных задач для себя и своих коллег. Оценив этот успех, Кляйн принял все меры, чтобы переманить Гильберта из провинциального Кенигсберга в славный Геттинген. Пусть молодой профессор ощутит себя наследником Гаусса – и превзойдет его, сделавшись не только открывателем новых истин, но главою универсальной научной школы!

Этот план удался: в Германии выросла «школа Гильберта», наследниками которой являются все нынешние математики и большинство физиков-теоретиков. Как произошло такое чудо?

Составляя обзор теории чисел, Гильберт понял простую вещь: задачник столь же важен, как учебник? Более того – одно невозможно без другого, потому что труд исследователя состоит в чередовании двух разновидностей работы. То решается новая задача – для этого приходится вводить новые понятия или угадывать необычные сочетания знакомых понятий. То автор пытается соединить ворох новых фактов и объектов в цельное здание – при этом на стыках блоков вспыхивают, как искры, новые задачи.

Каждый исследователь поочередно занимается тем или другим делом, уподобляясь качающемуся маятнику. Учитель же следит за множеством маятников – учеников, своевременно добавляя им энергию в нужной форме: то подбрасывая новые задачи, то излагая новые понятия в форме лекции или главы учебника.

К 38 годам Гильберт стал кумиром молодых математиков Геттингена и задумался над более широкой проблемой: можно ли воспитывать все мировое сообщество ученых? Конечно, можно: вольно или невольно это делает каждый автор нового учебника или монографии, излагающий цельную модель одной из областей науки. Почему нет столь же популярных и глубоких ЗАДАЧНИКОВ по всем ведущим наукам? Это упущение нужно исправить! В 1900 году Гильберт построил свой доклад на Международном математическом конгрессе, как обзор 23 крупных проблем из разных ветвей математики, намечающих возможные направления роста древней науки.