Квантовая механика II | страница 16



С наибольшей вероятностью электрон можно встретить близ атома примеси. Для соседних атомов вероятность спадает экспоненциально по мере удаления от атома примеси. Это новый пример «проникно­вения через барьер». С точки зрения классической физики элек­трону не хватило бы энергии, чтобы удалиться от энергетиче­ской «дырки» близ центра захвата. Но квантовомеханически он может куда-то недалеко просочиться.

§ 8. Амплитуды рассеяния и связанные состояния

Наш последний пример может быть использован, чтобы проиллюстрировать одну вещь, которая в наши дни очень полезна для физики частиц высокой энергии. Речь идет о связи между амплитудами рассеяния и связанными состояниями. Положим, мы открыли (при помощи опытов и теоретического анализа), как пионы рассеиваются на протонах. Затем откры­вается новая частица и кому-то хочется узнать, не является ли она просто комбинацией из пиона и протона, объединенных в одно связанное состояние (по аналогии с тем, как электрон, будучи связан с протоном, образует атом водорода)? Под связанным состоянием мы подразумеваем комбинацию, энергия которой ниже, чем у пары свободных частиц.

Существует общая теория, согласно которой, если ампли­туду рассеяния проэкстраполировать (или, на математическом языке, «аналитически продолжить») на энергии вне разрешен­ной зоны, то при такой энергии, при которой амплитуда стано­вится бесконечной, возникнет связанное состояние. Физическая причина этого такова. Связанное состояние — это когда имеют­ся только волны, стоящие близ некоторой точки; это состояние не порождается никакой начальной волной, оно просто сущест­вует само по себе. Относительная пропорция между так называе­мыми «рассеянными», или созданными, волнами и волнами, «посылаемыми внутрь», равна бесконечности. Эту идею мы мо­жем проверить на нашем примере. Выразим нашу рассеянную амплитуду (11.37) прямо через энергию Е рассеявшейся частицы (а не через k). Уравнение (11.30) можно переписать в виде

поэтому рассеянная амплитуда равна

Из вывода формулы следует, что применять ее можно только для реальных состояний — для тех, энергия которых попадает в энергетическую полосу, Е=Е>0+2А. Но представьте, что мы об этом забыли и расширили нашу формулу на «нефизические» области энергии, где | Е-Е>0|>2A. Для этих нефизических областей можно написать

Тогда «амплитуда рассеяния» (что бы это выражение ни зна­чило) равна

Теперь задаем вопрос: существует ли такая энергия Е,