Физика сплошных сред | страница 88



* Обычные пары натрия в основном моноатомны, хотя изредка там и встречаются молекулы Na>2.


Глава 36

ФЕРРОМАГНЕТИЗМ


§ 1. Токи намагничивания

§ 2. Поле Н

§ 3. Кривая намагннчивання

§ 4. Индуктивность с железным сердечником

§ 5. Электромагниты

§ 6. Спонтанная намагниченность

Повторить: гл. 10 (вып. 5)«Диэлектрики»

гл. 17 (вып. 6) «Законы индукции»


§ 1. Токи намагничивания

В этой главе мы поговорим о некоторых материалах, в которых полный эффект магнит­ных моментов проявляется во много раз силь­нее, чем в случае парамагнетизма или диамагне­тизма. Это явление называется ферромагне­тизмом. В парамагнитных и диамагнитных материалах при помещении их во внешнее магнитное поле возникает обычно настолько слабый наведенный индуцированный магнитный момент, что нам не приходится думать о доба­вочных магнитных полях, создаваемых этими магнитными моментами. Другое дело магнит­ные моменты ферромагнитных материалов, ко­торые создаются приложенным магнитным по­лем. Они очень велики и оказывают существен­ное воздействие на сами поля. Эти индуцирован­ные магнитные моменты так огромны, что они вносят главный вклад в наблюдаемые поля. Поэтому нам следует позаботиться о матема­тической теории больших индуцированных маг­нитных моментов. Это, разумеется, чисто фор­мальный вопрос. Физическая проблема состоит в том, почему магнитные моменты столь велики и как они «устроены». Но к этому вопросу мы подойдем немного позже.

Нахождение магнитных полей в ферромаг­нитных материалах несколько напоминает за­дачу о нахождении электрических полей в диэлектриках. Помните, сначала мы описывали внутренние свойства диэлектрика через век­торное поле Р — дипольный момент единицы объема. Затем мы сообразили, что эффект этой поляризации эквивалентен плотности заряда r>пол, определяемой дивергенцией Р;

r>пол= -С·Р. (36.1)

Полный же заряд в лю­бой ситуации можно запи­сать в виде суммы этого поляризационного заряда и всех других зарядов, плотность которых мы обозначим через r>др. Тогда уравнения Максвелла, ко­торые связывают дивергенцию Е с плотностью заря­дов, примут вид:

или

Затем мы можем пере­бросить поляризационную часть заряда в левую сторону уравнения и получить

С· (e>0Е+Р)=r>др. (36.2)

Этот новый закон говорит, что дивергенция величины (e>0Е+Р) равна плотности других зарядов.

Совместная запись Е и Р, как это сделано в уравнении (36.2), полезна, разумеется, только когда мы знаем какие-то соотношения между ними. Мы видели, что теория, связываю­щая наведенный электрический дипольный момент с полем,— вещь довольно сложная и ее на самом деле можно применять только в относительно простых случаях, но и то только как приближение. Я хочу напомнить вам об одном приближении.