Физика сплошных сред | страница 41
Это только вклад от электронов проводимости, которые, как мы думаем, играют в металлах главную роль.
Но теперь мы даже знаем, какой нам взять величину g, ибо она связана с проводимостью металла. В гл. 43 (вып. 4) мы обсудили связь проводимости металлов с диффузией свободных электронов в кристалле. Электроны движутся по ломаному пути от одного соударения до другого, а между этими толчками они летят свободно, за исключением ускорения из-за какого-то среднего электрического поля (фиг. 32.2).
Фиг. 32.2. Движение свободного электрона.
Там же, в гл. 43 (вып. 4), мы нашли, что средняя скорость дрейфа равна просто произведению ускорения на среднее время между соударениями t. Ускорение равно q>eE/m, так что
v>дрейф=(q>eE/m)t. (32.39)
В этой формуле поле Есчитается постоянным, так что скорость v>дрейф тоже постоянна. Поскольку в среднем ускорение отсутствует, сила торможения равна приложенной силе. Мы определили g через силу торможения, равную gmv [см. (32.1)], или q>eE, поэтому получается, что
g=1/t (32.40)
Несмотря на то что мы не можем с легкостью измерять непосредственно t, можно определять его, измеряя проводимость металла. Экспериментально обнаружено, что электрическое поле Е порождает в металлах ток с плотностью j, пропорциональной Е (для изотропного материала, конечно):
причем постоянная пропорциональности s называется проводимостью.
В точности то же самое мы ожидаем из выражения (32.39),
если положить
j=Nq>ev>дрейф,
тогда
Таким образом, t, а следовательно, и g могут быть связаны с наблюдаемой электрической проводимостью. Используя (32.40] и (32.41), можно переписать нашу формулу (32.38) для показателя преломления в виде
где
Это и есть известная формула для показателя преломления в металлах.
§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота
Наш результат для показателя преломления в металлах —формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при низких частотах. Если величина w достаточно мала, то (32.42) можно приближенно записать в виде
Возведением в квадрат можно проверить, что
таким образом, для низких частот
Вещественная и мнимая части n имеют одну и ту же величину. С такой большой мнимой частью n волны в металлах затухают очень быстро. В соответствии с выражением (32.36) амплитуда волны, идущей в направлении оси z, уменьшается как