Физика сплошных сред | страница 27



>ijкак функцию положения. Тензор напряжений, таким об­разом, является полем. Мы уже имели примеры скалярных по­лей, подобных температуре Т(х, у, z), и векторных полей, по­добных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задавае­мого в каждой точке пространства девятью числами, из кото­рых для симметричного тензора S>ijреально остается только шесть. Полное описание внутренних сил в произвольном твер­дом теле требует знания шести функций координат х, у и z.

§ 7. Тензоры высших рангов

Тензор напряжений S>ijописывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформа­ции удобно описывать с помощью другого тензора T>ij— так называемого тензора деформаций. Для простого объекта, подоб­ного бруску из металла, изменение длины DL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука

DL=gF.

Для произвольных деформаций упругого твердого тела тензор деформаций T>ijсвязан с тензором напряжений S>ij>системой линейных уравнений

Вы знаете также, что потенциальная энергия пружины (или бруска) равна

а обобщением плотности упругой энергии для твердого тела будет выражение

Полное описание упругих свойств кристалла должно задаваться коэффициентами g>ijkl. Это знакомит нас с новым зверем — тен­зором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего ока­зывается 3>4=81 коэффициент. Но различны из них на самом де­ле только 21. Во-первых, поскольку тензор S>ij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициен­тов. Затем, не изменяя энергии, мы можем переставить S>ij>и S>kl, так что g>ijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей воз­можной симметрии, требуется 21 упругая постоянная! Разу­меется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кри­сталл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.

В справедливости последнего утверждения можно убе­диться следующим образом. В случае изотропного материала компоненты g>ijklне должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры d