Электродинамика (2) | страница 4



и его привыкли обозначать через z (не следует путать с координатой z). В общем случае это функция частоты w. Стало быть, для каж­дого сосредоточенного элемента мы напишем


(22.5)

Для индуктивности мы имеем


(22.6)


Фиг. 22.2. Емкость (или конденсатор).

Рассмотрим с этой точки зрения емкость . Она состоит из двух проводящих пластин (обкладок), от которых к нужным за­жимам отходят два провода. Пластины могут быть любой формы и часто отделяются друг от друга каким-нибудь диэлектриком. Это схематически изображено на фиг. 22.2. Мы снова делаем несколько упрощающих предположений. Мы считаем, что пла­стины и провода — идеальные проводники, а изоляция между пластинами тоже идеальна, так что через нее никакие заряды с пластины на пластину перейти не могут. Затем мы предпола­гаем, что проводники находятся близко друг от друга, но зато аначительно удалены ото всех остальных проводников, так что все линии поля, выйдя из одной пластины, непременно окан­чиваются на другой. И тогда заряды на пластинах всегда равны и противоположны друг другу, причем по величине намного превосходят величину заряда на поверхности проводов. И на­конец, мы считаем, что поблизости от конденсатора магнитных полей нет.

Рассмотрим теперь контурный интеграл от Е вдоль замкну­той петли, которая начинается на клемме а, проходит внутри провода до верхней обкладки конденсатора, перескакивает про­межуток между пластинами, проходит с нижней обкладки на клемму b и возвращается к клемме а по пространству снаружи конденсатора. Раз магнитного поля нет, контурный интеграл от Е по этому замкнутому пути равен нулю. Интеграл можно раз­бить на три части:


Интеграл вдоль проводов равен нулю, потому что внутри идеаль­ных проводников электрического поля не бывает. Интеграл от зажима b до а снаружи конденсатора равен разности потенциалов между клеммами со знаком минус. А поскольку мы считаем, что обкладки как-то изолированы от прочего мира, то общий заряд двух обкладок должен быть равен нулю; и если на верх­ней обкладке есть заряд Q, то на нижней имеется заряд —Q. Раньше мы уже видели, что если заряды двух проводников рав­ны и противоположны, +Q и -Q, то разность потенциалов между ними есть Q/C, где С — емкость этих проводников. Из (22.7) следует, что разность потенциалов между зажимами а и b равна разности потенциалов между обкладками. Поэтому

Электрический ток I, втекающий в конденсатор через клемму а (и покидающий его через клемму b