Электричество и магнетизм (2) | страница 19
Когда же нам понадобится потенциал этого распределения, то брать интегралы не нужно. Мы знаем, что потенциал каждого заряженного шара —- в точках вне его— совпадает с потенциалом точечного заряда. А два смещенных шара — все равно, что два точечных заряда; значит, искомый потенциал и есть как раз потенциал диполя.
Фиг. 6,6. Две равномерно заряженные сферы, вложенные друг вдруга и слегка смещенные, эквивалентны неоднородному распределению
поверхностного заряда.
Таким путем можно показать, что распределение зарядов на сфере радиуса а с поверхностной плотностью
создает снаружи сферы такое же поле, как и диполь с моментом
Можно также показать, что внутри сферы поле постоянно и равно
Если q — угол с положительной осью z, то электрическое поле внутри сферы направлено по отрицательной оси z. Рассмотренный нами пример отнюдь не досужая выдумка составителя задач; он нам встретится еще в теории диэлектриков.
§ 5. Дипольное приближение для произвольного распределения
Столь же интересно и не менее важно поле диполя, возникающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выражение для полей, пригодное для расстояний, много больших, чем размеры тела.
Мы можем смотреть на это тело, как на скопление точечных зарядов q>iв некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы q>iзаменим на pdV.) Пускай заряд q>iудален от начала координат, выбранного где-то внутри группы зарядов, на расстояние d>i>. Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много большем, чем самое большое из d>i,?Потенциал всего нашего скопления выражается формулой
(6.21)
где r>i — расстояние от Р до заряда q>i(длина вектора R-d>i). Если расстояние от зарядов до Р (до точки наблюдения) чрезвычайно велико, то каждое из r>i можно принять за R. Каждый член в сумме станет равным q>i/R, и 1IR можно будет вынести из-под знака суммы. Получится простой результат
(6.22)
где Q — суммарный заряд тела. Таким образом, мы убедились, что из точек, достаточно удаленных от скопления зарядов, оно кажется просто точечным зарядом. Этот результат в общем не очень удивителен.
Но что, если положительных и отрицательных зарядов в группе окажется поровну? Суммарный заряд Qтогда будет равен нулю. Это не такой уж редкий случай; мы знаем, что большинство тел нейтрально. Нейтральна молекула воды, но заряды в ней размещаются отнюдь не в одной точке, так что, приблизившись вплотную, мы должны будем заметить какие-то признаки того, что заряды разделены. Для потенциала произвольного распределения зарядов в нейтральном теле мы нуждаемся в приближении, лучшем, чем даваемое формулой (6.22). Уравнение (6.21) по-прежнему годится, но полагать