Электричество и магнетизм (2) | страница 12



Мы замечаем также, что электрическое поле возле самой поверхности проводника должно быть нормально к поверхности. Касательной составляющей у него быть не может. Если бы она появилась, электроны двигались бы вдоль поверхности; нет сил, которые способны помешать этому. Это можно выразить и иначе: мы знаем, что линии электрического поля должны всег­да быть направлены поперек эквипотенциальной поверхности.

Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем не­большой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11). Вклад в общий поток Е дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверх­ности проводника равно

Вне проводника:

(5.8)

Фиг. 5.11. Электрическое поле у самой внешней поверхности провод­ника пропорционально локальной поверхностной плотности заряда.

1 — гауссова поверхность; 2 локаль­ная плотность поверхностного заряда.s.

Почему слой зарядов на проводнике создает не такое поле, как слой зарядов сам по себе! Иначе говоря, почему (5.8) вдвое больше (5.3)? Но ведь мы не утверждали, будто в проводнике нет больше никаких «других» зарядов. В действительности для того, чтобы в проводнике Е было равно 0, в нем обязательно должны присутствовать какие-то заряды. В непосредственной близости от точки Р на поверхности заряды действительно соз­дают поле E>лок=s>лок/2e>0 как внутри, так и снаружи поверхно­сти. Но все прочие заряды проводника сообща «устраивают за­говор», чтобы создать в точке Р добавочное поле, равное по величине Е>лок. Суммарное внутреннее поле обращается в нуль, а наружное удваивается: 2E>лок=s/e>0.

§ 10. Поле внутри полости проводника

Вернемся теперь к проблеме пустотелого резервуара — про­водника, имеющего внутри полость. В металле поля нет, а вот есть ли оно в полости? Покажем, что если полость пуста, то поля в ней быть не может, какова бы ни была форма провод­ника или полости (фиг. 5.12). Рассмотрим гауссову поверхность, подобную S на фиг. 5.12, которая окружает собой полость, но остается всюду в веществе проводника. Всюду на поверхности S поле равно нулю, так что потока сквозь S быть не может, и суммарный заряд внутри S должен быть равен нулю. Затем можно вывести из симметрии, что на внутренней поверхности сферической оболочки нет никакого заряда. Но в более общем случае мы только можем сказать, что на внутренней поверх­ности проводника имеется равное количество положительного и отрицательного зарядов. Может быть, окажется, что на од­ной части имеется положительный заряд, а где-то в другом месте — отрицательный (см. фиг. 5.12)? Такие вещи законом Гаусса не исключаются.