Электричество и магнетизм (2) | страница 10



отличался бы от 2 только на одну миллиардную.

А верен ли этот закон и на еще меньших расстояниях? В ядер­ной физике измерения показали, что на типично ядерных рас­стояниях (порядка 10>-13см) существуют электростатические силы и что меняются они все еще как обратные квадраты расстоя­ний. Одно из свидетельств в пользу этого мы разберем в следую­щих главах. Мы уверены, таким образом, что закон Кулона еще выполняется и на расстояниях около 10>-13см.

А что можно сказать о расстоянии 10>-14см! Этот интервал исследовали, бомбардируя протоны очень энергичными элект­ронами и следя за тем, как они рассеиваются. Сегодняшние дан­ные указывают на то, что на этих расстояниях закон терпит крах. Электрические силы на расстояниях меньше 10>-14см оказываются чуть ли не в 10 раз слабее. Этому есть два объясне­ния. То ли закон Кулона на таких маленьких расстояниях не действует, то ли эти тела (электроны и протоны) не являются точечными зарядами. Возможно, что один из них как-то размазан (а может, и оба). Большинство физиков предпочитают думать, что размазан заряд протона. Мы знаем, что протоны сильно взаимодействуют с мезонами. Это означает, что протон время от времени существует в виде нейтрона с p>+ - мезоном вокруг. Такое расположение в среднем выглядело бы как небольшой шарик положительного заряда. А мы знаем, что нельзя считать поле шара зарядов меняющимся вплоть до самого центра по закону 1/r>2. Вполне вероятно, что заряд протона размазан, но теория пионов еще очень несовершенна, и не исключено, что и закон Кулона на малых расстояниях отказывает. Вопрос пока остается открытым.

Еще один каверзный вопрос: если закон обратных квадратов верен и на расстояниях порядка 1м и на расстояниях порядка 10>-10м, то остается ли тем же коэффициент 1/4pe>0? Да,— гласит ответ,— по крайней мере, с точностью до 15 миллионных.

Вернемся теперь к важному вопросу, от которого мы отмах­нулись, когда говорили об опытном подтверждении закона Гаусса.

Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сфери­ческий проводник мог быть идеальной сферой. Достичь точно­сти в одну миллиардную — это прекрасно; но резонно спро­сить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реаль­ной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внут­ри замкнутой проводящей оболочки