Кинетика. Теплота. Звук | страница 27



>2/2kT), а постоянную пропорциональности еще надо определить:


Если теперь продифференцировать интеграл по и, то мы получим подынтегральное выражение (со знаком минус, по­тому что и — это нижний предел интегрирования), а диффе­ренцируя правую часть равенства, мы получим произведение и на экспоненту (и на некоторую постоянную). Сократим в обеих частях и, и тогда

Мы оставили в обеих частях равенства du, чтобы помнить, что это распределение; оно говорит нам об относительном числе молекул, имеющих скорость между u и u+du.

Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать, что

Используя это обстоятельство, легко найти С=Ц(m/2pkT).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отне­сенное к единице импульсной шкалы, также пропорционально ехр(-к.э./kT). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в тер­минах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

f(p)dp=ce>->к.э.>/>kTdp. (40.8)

Это значит, что мы установили, что вероятности, определяе­мые энергиями разного происхождения (и кинетической и по­тенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распре­делении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить пол­ное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функ­цией u>2 — вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mv>2>x/2, mv>2>y/2 и mv>2>z/2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:


f(v>x,, v>y, v>z) dv>x dv>y dv>z~


Вы можете убедиться в том, что эта формула верна, ибо, во-первых, распределение зависит только от v>2 и, во-вторых, ве­роятности данных v