Излучение. Волны. Кванты (2) | страница 16
Ф и г. 34.1. Траектория движущегося заряда.
Истинное положение в момент времени t есть Т, положение при учете запаздывания есть А.
а то место, где находился бы заряд, если учесть конечную скорость передачи информации от заряда к наблюдателю.
Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой
(34.2)
Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико.
В гл. 28 мы уже говорили, что в производную d>2e>R>' '/dt>2 входит только изменение направления еR'. Пусть заряд находится в точке с координатами (х, у, z) и ось z лежит вдоль линии наблюдения (фиг. 34.1). В данный момент времени т координаты заряда есть x(т), y(т) и z(т)- Расстояние R с большой точностью равно .R(т) = r0 + z(т). Направление вектора еR' зависит главным образом от х и у и почти совсем не зависит от z. Поперечные компоненты единичного вектора равны x/R и y/R; дифференцируя их, мы получаем члены, содержащие R>2 в знаменателе:
Таким образом, на достаточно больших расстояниях существенны только члены с производными х и у. Отсюда
(34.3)
где R>0 примерно равно расстоянию до заряда q; определим его как расстояние ОР до начала координат (х, у, z). Итак, электрическое поле равно константе, умноженной на очень простую величину — производную координат х и у по t. (Математически можно назвать их поперечными компонентами вектора положения заряда r, но ясности от этого не прибавится.)
Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от z (т). Чему равно время запаздывания? Обозначим время наблюдения через t (это время в точке наблюдения Р), тогда время т, которое в точке А соответствует времени t, не будет совпадать с t, а отстает от него на промежуток времени, необходимый свету, чтобы пройти все расстояние от заряда до точки наблюдения. В первом приближении время запаздывания равно R>0/c, т. е. постоянной (что неинтересно), а в следующем приближении должно зависеть от z-координаты положения заряда в момент t, потому что для заряда q, сдвинутого немного назад, запаздывание увеличивается. Этим эффектом мы раньше пренебрегали, если теперь учесть его, то мы получим формулу, пригодную для любых скоростей. Нам остается выбрать определенное значение t, вычислить с его помощью т и найти х и у в момент времени t. Запаздывающие значения х и у обозначим через х' и y', вторые производные от них определяют