Излучение. Волны. Кванты (2) | страница 11
(33.1)
Теперь немного схитрим. Как мы знаем, на обоих рисунках фиг. 33.6 электрическое поле в стекле вызывает движение зарядов, которое генерирует поле с амплитудой, равной -1, поляризованное точно так же, как и в падающем луче, и распространяющееся вдоль пунктирной линии. Но из фиг. 33.6, б видно, что только перпендикулярная пунктирной линии компонента А дает полю необходимую поляризацию, тогда как на фиг. 33.6,а в создании поля на пунктирной линии эффективно участвует вся амплитуда а, поскольку ее поляризация параллельна поляризации поля с амплитудой -1. Следовательно, справедливо соотношение
(33.2)
так как обе амплитуды в левой части (33.2) создают волны с амплитудой -1.
Разделив (33.1) на (33.2), получаем
(33.3)
Проверим правильность этого результата на уже известном нам факте. Положив (i+r) =90°, из (33.3) получим B=0, что и было найдено в свое время Брюстером; таким образом, наш результат по крайней мере не содержит очевидной ошибки.
По предположению падающая волна имеет единичную амплитуду; тогда |B|>2/1>2 есть коэффициент отражения лучей, поляризованных в плоскости падения, а |b|>2/1>2 — коэффициент отражения лучей, поляризованных перпендикулярно плоскости падения. Отношение этих двух коэффициентов определяется с помощью формулы (33.3).
А теперь сотворим чудо и вычислим не только отношение, но и каждый коэффициент |В|>2 и |b|>2 в отдельности! Из закона сохранения энергии вытекает, что энергия преломленной волны должна быть равна энергии падающей волны минус энергия отраженной волны, т. е. 1-|В|>2 в одном случае и 1-|b|>2 —в другом. Более того, энергия света, прошедшего внутрь стекла в случае, показанном на фиг. 33.6, а, и такая же энергия в случае фиг. 33.6, б относятся как квадраты амплитуд преломленных волн: |A|>2/|а|>2. Возникает вопрос, возможно ли вычислить энергию волны в стекле, если кроме энергии электрического поля, вообще говоря, имеется и энергия движения атомов. Однако ясно, что любой вклад в полную энергию должен быть пропорционален квадрату амплитуды электрического поля. Следовательно,
(33.4)
Подставим сюда соотношение (33.2) и исключим A/a в написанном выражении, а величину В выразим через b с помощью формулы (33.3):
(33.5)
Здесь неизвестной величиной остается только b. Разрешая уравнение относительно |b|>2, получаем
(33.6)
и, воспользовавшись (33.3), находим
(33.7)
Таким образом, мы нашли коэффициент отражения |b|>2 для падающей волны, поляризованной перпендикулярно плоскости падения, и коэффициент отражения |B|