Излучение. Волны. Кванты | страница 31



А как быть с запаздыванием? Как показать, что сигнал дейст­вительно запаздывает? Конечно, прибегнув к большому числу сложных устройств, можно измерить время прибытия сигнала, но есть другой, очень простой способ. Обратимся снова к фиг. 28.3 и предположим, что S1 и S>2 находятся в одной фазе. Оба ис­точника колеблются одинаково и создают в точке 1 равные поля. Но вот мы перешли в точку 2, которая находится ближе к S>2,, чем к S>1. Тогда, поскольку запаздывание определяется величи­ной r/c, при разных запаздываниях сигналы будут приходить с разными фазами. Следовательно, должна существовать такая точка, для которой расстояния от D до S>1 и S>2 различаются на такую величину D, когда сигналы будут погашаться.

В этом случае D должна быть равна расстоянию, проходимо­му светом за половину периода колебаний генератора. Сдвинем­ся еще дальше и найдем точку, где разность расстояний соот­ветствует полному периоду колебаний, т.е. сигнал от первой антенны достигает точки 3 с запаздыванием по сравнению с сиг­налом от второй антенны, и это запаздывание в точности равно одному периоду колебаний. Тогда оба электрических поля сно­ва находятся в одной фазе и сигнал в точке 3 опять становится сильным.

На этом закончим описание экспериментальной проверки важнейших следствий формулы (28.6). Мы, конечно, не каса­лись вопроса об электрических полях, спадающих по закону 1/r, и не учитывали, что магнитное поле сопутствует электриче­скому при распространении сигнала. Для этого требуется до­вольно сложная техника вычислений, и вряд ли это что-либо добавит к нашему пониманию вопроса. Во всяком случае, мы установили свойства, наиболее важные для последующих при­ложений, а к другим свойствам электромагнитных волн мы еще вернемся.


Глава 29

ИНТЕРФЕРЕНЦИЯ


§ 1. Электромагнит­ные волны

§ 2. Энергия излучения

§ 3. Синусоидальные волны

§ 4. Два дипольных излучателя

§ 5. Математическое описание интерференции

§ 1. Электромагнитные волны

В этой главе мы будем обсуждать те же вопросы, что и в предыдущей, но с большими математическими подробностями. Качественно мы уже показали, что поле излучения двух ис­точников имеет максимумы и минимумы, и те­перь наша задача — дать математическое, а не просто качественное описание поля.

Мы вполне удовлетворительно разобрали физический смысл формулы (28.6), рассмотрим теперь некоторые ее математические черты. Прежде всего поле заряда, движущегося вверх и вниз с малой амплитудой в направлении 0 от оси движения, перпендикулярно лучу зрения и лежит в плоскости ускорения и луча зрения (фиг. 29.1). Обозначим расстояние через r, тогда в момент времени t величина электрического поля равна