Излучение. Волны. Кванты | страница 21
Фиг. 27.8. Главные плоскости оптической системы.
Весьма интересно, что результат для большой и сложной оптической системы оказался таким простым,
§ 6. Аберрация
Пока вы еще не успели прийти в восхищение от такой великолепной штуки, как линза, я должен успеть сказать об ее серьезных недостатках, которые мы не могли заметить раньше, поскольку ограничились рассмотрением параксиальных лучей. Реальная линза обладает конечной толщиной и, вообще говоря, обнаруживает свойства аберрации. Например, луч, направленный вдоль оси, обязательно пройдет через фокус. Луч, близкий к оси, будет еще проходить через фокус, но более далекие лучи начнут от него отклоняться: близкие ненамного, а крайний луч уже на большое расстояние. В результате вместо точечного изображения получается расплывчатое пятно. Этот эффект называется сферической аберрацией, потому что он возникает в результате использования сферических поверхностей вместо поверхностей правильной формы. Для каждого данного расстояния от объекта до линзы эффект аберрации можно устранить, изменив форму линзы или взяв несколько линз с таким расчетом, чтобы аберрации отдельных линз взаимно уничтожались.
Линзы страдают еще одним недостатком: свет разного цвета имеет разную скорость, т. е. разные показатели преломления в стекле, а поэтому фокусное расстояние для разных цветов разное. Изображение белого пятна получается цветным, так как, когда в фокусе красный цвет, синий оказывается вне фокуса, и наоборот. Это явление называется хроматической аберрацией.
Бывают и другие искажения. Если объект находится не на оси, то добиться четкого фокуса невозможно. Легче всего это проверить, наклонив наведенную на фокус линзу так, чтобы в нее попадали лучи под большим углом к оси. Тогда изображение сильно расплывется и может случиться, что ни одного четко сфокусированного места не останется. Таким образом, линзы страдают рядом искажений, и обычно оптик-конструктор старается их выправить, соединяя по нескольку линз, с тем чтобы скомпенсировать искажения отдельных линз.
До какого предела можно устранить аберрации? Можно ли создать совершенную оптическую систему? Допустим, что мы сумели построить оптическую систему, фокусирующую свет точно в одну точку. Можем ли мы теперь найти требования (с точки зрения принципа Ферма), которым должна удовлетворять наша система? Система всегда имеет отверстие конечных размеров, в которое входит свет. Для совершенной системы время прохождения любого, как угодно удаленного от оптической оси луча одинаково. Но абсолютного совершенства не бывает, поэтому поставим вопрос: каков разумный предел точности совпадения всех времен? Это зависит от того, насколько совершенное изображение мы хотим иметь. Предположим, что мы хотим, чтобы оно было настолько совершенным, насколько это вообще возможно. Тогда с первого взгляда кажется, что и времена прохождения всех лучей нужно уравнять с максимальной точностью. На самом деле это не так; существует некий предел, за которым всякое уточнение бессмысленно, потому что приближение геометрической оптики перестает работать!