Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим | страница 24



Используя подход «N = всё», мы можем глубоко изучить данные. Не то что с помощью выборки! Кроме того, уже упоминалось, что мы могли бы достичь 97%-ной точности, экстраполируя результаты на все население. В некоторых случаях погрешность в 3% вполне допустима, однако при этом теряются нюансы, точность и возможность ближе рассмотреть некоторые подгруппы. Нормальное распределение, пожалуй, нормально. Но нередко действительно интересные явления обнаруживаются в нюансах, которые невозможно в полной мере уловить с помощью выборки.

Вот почему служба Google Flu Trends полагается не на случайную выборку, а на исчерпывающий набор из миллиардов поисковых интернет-запросов в США. Используя все данные, а не выборку, можно повысить точность анализа настолько, чтобы прогнозировать распространенность какого-либо явления не то что в государстве или всей нации, а в конкретном городе.[31] Исходная система Farecast использовала выборку из 12 000 точек данных и хорошо справлялась со своими задачами. Но, добавив дополнительные данные, Орен Эциони улучшил качество прогнозирования. В итоге система Farecast стала учитывать все ценовые предложения на авиабилеты по каждому маршруту в течение всего года. «Это временные данные. Просто продолжайте собирать их — и со временем вы станете все лучше и лучше понимать их закономерности», — делится Эциони.[32]

Таким образом, в большинстве случаев мы с удовольствием откажемся от упрощенного варианта (выборки) в пользу полного набора данных. При этом понадобятся достаточные мощности для обработки и хранения данных, передовые инструменты для их анализа, а также простой и доступный способ сбора данных. В прошлом каждый из этих элементов был головоломкой. Мы по-прежнему живем в мире ограниченных ресурсов, в котором все части головоломки имеют свою цену, но теперь их стоимость и сложность резко сократились. То, что раньше являлось компетенцией только крупнейших компаний, теперь доступно большинству.

Используя все данные, можно обнаружить закономерности, которые в противном случае затерялись бы на просторах информации. Так, мошенничество с кредитными картами можно обнаружить путем поиска нетипичного поведения. Единственный способ его определить — обработать все данные, а не выборку. В таком контексте наибольший интерес представляют резко отклоняющиеся значения, а их можно определить, только сравнив с массой обычных транзакций. В этом заключается проблема больших данных. А поскольку транзакции происходят мгновенно, анализировать нужно тоже в режиме реального времени.