Энергия и жизнь | страница 52



Совершенствование пробионтов под влиянием естественного отбора постепенно привело к появлению живых клеток. По метаболизму ни одно живое существо в принципе не делает больше того, что могли делать пробионты [Медников, 1980]. Поэтому возникновение систем репликации и передачи наследственного материала от родительских к дочерним клеткам следует считать одной из важнейших черт жизни. Однако именно здесь кроется самая большая тайна. Можно согласиться с Р. Дикерсоном [1981], что эволюция генетического аппарата — это тот этап эволюции, для которого лабораторных моделей не найдено, поэтому рассуждать о ней можно бесконечно, не смущаясь неудобными фактами. Действительно, генетический аппарат современных организмов настолько сложен и универсален, что почти невозможно его себе представить в примитивном виде. А это значит, что главные принципы эволюции — ее непрерывность и последовательность — пока еще четко не продемонстрированы.

Не вызывает сомнения, что генетический аппарат эволюционировал согласованно (т. е. «курица и яйцо» вместе) из наиболее простых форм. Важно отметить, теперь уже с позиций энергетического подхода, что простые первичные варианты, как неэффективно функционирующие, были вытеснены в дальнейшей конкурентной борьбе и исчезли впоследствии. О них теперь можно только гадать. Одной из самых загадочных является проблема возникновения рибосомального аппарата биосинтеза белков. Тут сразу требуется несколько десятков молекул специфических белков и не менее трех типов молекул РНК с различными молекулярными весами.

Постепенность развития биополимеров в протоклетках связана с увеличением их малых, по сравнению с современными биополимерами, размеров. Первичные «белки» могли быть совсем небольшими молекулами, могли состоять лишь из пяти — семи аминокислотных остатков. И первичные полинуклеотиды содержали не миллионы, а десяток-другой оснований. Такие полимеры и получаются во многих экспериментах, имитирующих начальные условия. Напомним, что каталитический активный центр фермента почти всегда гораздо меньше всей молекулы фермента, он имеет лишь небольшое число аминокислотных остатков. Остальную часть большой молекулы можно считать позднейшей надстройкой: она не связана с катализом отдельной реакции, а служит для целостного контроля в клетке.

При таком подходе можно постепенно двигаться дальше. Представим небольшую генераторную РНК, выполняющую и генетическую, и матричную роль. Более устойчивая ее форма — кольцо. В этой же клетке может быть несколько коротких тРНК. Генераторная РНК способна реплицироваться без ферментов, хотя и медленно. На циклическом генераторе могут непрерывно реплицироваться новые РНК, гораздо более длинные, двух типов: крупные кольцевые и линейные. Для ускорения реакции необходимы простые полипептиды, катализирующие синтез олигопуклеотидов. Синтез таких пяти-, семичленных пептидов, но уже со специфической последовательностью, возможен с помощью коротких первичных тРНК на генераторной РНК, выполняющей роль матричной РНК. Связывание аминокислоты с тРНК, возможно, обеспечивалось энергией пирофосфатпых связей. Внешняя среда служила источником всех необходимых малых молекул, т. е. они «высасывались» протоклеткой из среды по правилам химической кинетики. Пирофосфаты образовывались под влиянием потока энергии ультрафиолетового излучения Солнца. Так могла работать первичная живая клетка по К. Фолсому. (Но, может быть, и не совсем так.)