Энергия и жизнь | страница 51



Прямое использование энергии и большой выход реакции (практически весь углерод переходит в эти структуры) заставляют обратить на такие сферулы особое внимание. Рецепторами энергии в них могут служить порфирины, которые легко получаются в экспериментах по имитации химической эволюции пирролов. Протоклетки, имеющие гидрофобную границу раздела фаз, способны избирательно адсорбировать порфирины. В свою очередь, сорбированные порфирины могут служить рецепторами ультрафиолетового излучения, устанавливать протонные градиенты и превращать энергию излучения в потенциальную энергию химических связей. Следовательно, на самой ранней стадии возникновения жизни возможно существование гетеротрофных фотосинтезирующих организмов, использующих УФ-излучение для создания полимеров. Даже нерегулярные полимеры аминокислот, образующие комплексы с ионами металлов, обладают слабой каталитической активностью. Так открывается поле деятельности для естественного отбора.

Вторая из конкурентных гипотез имеет дело с прямым использованием энергии первичных газовых выбросов изнутри нашей планеты. В гл. 4 мы подчеркивали, что основу функционирования живых систем составляет цикл реакций окисления — восстановления. В первичной атмосфере окислительные условия создавались за счет фотохимических реакций, к примеру отщеплением водорода с его диффузией в космос. По расчетам, восстановленные соединения типа CH>4 в такой атмосфере неустойчивы и быстро окисляются. Глубины Земли, наоборот, являются источником восстановительных газов, которые поступали изнутри особенно интенсивно на ранних этапах развития самой планеты.

Представляется возможным даже полностью независимое развитие и существование литотрофных организмов за счет энергии водорода и других восстановительных газов, имеющих как ювенильное, так и метаморфическое происхождение. Одним из главных условий поддержания и развития микроорганизмов (первичных организмов) является наличие длительного и достаточного потока энергии. По крайней мере, хемолитотрофные организмы способны окислять все основные компоненты вулканических газов: H>2, CO, NH>3, CH>4, SO>2 и т. д. Поэтому в местах длительного выхода глубинных газов может развиваться микробное сообщество, использующее не продукты разложения органического вещества, синтезированного каким-то другим, а первичные продукты газовых выделений [Заварзин, 1984], таким образом вместо фототрофии имеется возможность хемолитотрофии.