Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мирe | страница 62



С помощью нижеприведенной аналогии я надеюсь пролить свет на основную идею фундаментальной теоремы и то, зачем она нужна. (Ее предложил мой коллега Чарли Пескин из Нью-Йоркского университета.) Представьте себе лестницу, общее изменение высоты которой от нижней до верхней ступенек равно сумме высот всех ступенек. Это верно даже при условии, что высота одних ступенек больше, чем других. Количество ступенек не имеет значения.

Фундаментальная теорема интегрального исчисления работает и для функций. Если проинтегрировать производную функции от одной точки до другой, то получим ее изменение между двумя точками. В данной аналогии функции — это увеличение подъема каждой ступеньки по отношению к уровню земли. Высоты отдельных ступенек — производные. Интегрирование производных — это суммирование подъемов. А две точки — верхняя и нижняя часть лестницы.

Что это нам дает? Предположим, вас попросили просуммировать огромный список чисел. Оказывается, что бы вы ни суммировали, всякий раз вы берете интеграл по частям. Если вам удастся найти соответствующие лестницы — другими словами, если вы сможете отыскать функцию подъема, для которой подходят эти числа, — то вычислить интеграл совсем несложно. Просто нужно из верха вычесть низ[25].

Это огромное достижение в ускорении вычисления стало возможным благодаря фундаментальной теореме интегрального исчисления. Именно поэтому с первых месяцев преподавания курса интегрального исчисления мы требуем от студентов нахождения функции возвышения, что в математике называется первообразной или неопределенным интегралом.

С точки зрения перспективы надежным наследием интегрального исчисления будет своего рода взгляд Veg-O-Matic[26] на Вселенную. Ньютон и его преемники обнаружили, что сама природа открывается по кусочкам. Оказалось, что таким свойством обладают практически все открытые за последние 300 лет законы физики, что бы они ни описывали: движение частиц, тепловые потоки, электричество, воздух или воду. Вместе с основополагающими законами условия в каждом кусочке времени или пространства определят, что произойдет в соседних кусочках. Впервые в истории рациональное прогнозирование стало возможным — не в час по чайной ложке, а семимильными шагами благодаря фундаментальной теореме.

Так что давно пора поменять наш лозунг для интегралов «Хоть ломтиками, хоть кубиками» на «Пересчитайте заново. Есть метод получше».

19. Все о числе e

Некоторые числа — такие знаменитости, что их эстрадные имена состоят всего лишь из одной буквы. Даже самые важные персоны, такие как Мадонна и Принц, не могут с ними сравниться. Самое знаменитое — число π, ранее известное как 3,14159...