Разум и природа | страница 54




Рис. 5

Суть этого механизма состоит в том, что информация, которую мог бы дать один только нейрон А, разделяется или классифицируется на два класса — на те возбуждения, которые сопровождаются стимулами из В, и те, которые не сопровождаются стимулами из В. Соответственно, возбуждения нейрона В тоже подразделяются на два класса — на те, которые сопровождаются стимулами из А, и те, которые не сопровождаются стимулами из А.

5. СЛУЧАЙ ПРИЗРАЧНОГО КИНЖАЛА

Макбет уже готов убить Дункана, он в ужасе от того, что собирается сделать, и ему мерещится кинжал (Акт II, сцена I).

Откуда ты, кинжал,

Возникший в воздухе передо мною?

Ты рукояткой обращен ко мне,

Чтоб легче было ухватить. Хватаю —

И нет тебя. Рука пуста. И все ж

Глазами не перестаю я видеть

Тебя, хотя не ощутил рукой.

Так, стало быть, ты — бред, кинжал сознанья

И воспаленным мозгом порожден?

Но нет, вот ты, ничем не отличимый

От вынутого мною из ножон.

Ты мой дорожный знак, напоминанье,

Куда идти и что мне захватить.

Так близоруко ль я обманут или,

Наоборот, так вижу далеко,

Но ты маячишь снова пред глазами,

В крови, которой не было пред тем,

Обман, которого не существует,

Как бы собой наглядно воплотив

Кровавый шаг, который я задумал.

[Перевод Б. Пастернака. — Прим. перев.]

Этот литературный пример пригоден для всех случаев двойного описания, когда объединяются данные из двух или более органов чувств. Макбет «доказывает», что кинжал — это всего лишь галлюцинация, проверяя его с помощью осязания, но даже этого оказывается недостаточно. Может быть, его глаза «стоят всего остального». И только когда на воображаемом кинжале появляется кровь, он может отбросить это видение: «Обман, которого не существует».

Сравнение информации из одного органа чувств с информацией из другого, дополненное изменением в галлюцинации, послужило Макбету метаинформацией о том, что его видение было воображаемым. В терминах Рисунка 4, множество АВ было пусто.

6. СЛУЧАЙ СИНОНИМИЧНЫХ ЯЗЫКОВ

Во многих случаях новое понимание возникает только благодаря использованию для описания другого языка, даже если при этом не добавляется никакой новой, так называемой «объективной» информации. Поясним это отношение на примере двух доказательств одной математической теоремы.

Каждый школьник знает, что (a + b)>2 = a>2 + 2ab + b>2. Может быть, он знает и то, что это первый шаг в разделе математики, который называется теорией биномов. Само это равенство достаточно хорошо иллюстрируется алгоритмом алгебраического умножения, каждый шаг которого находится в соответствии с определениями и постулатами тавтологии, называемой