Гравитация. От хрустальных сфер до кротовых нор | страница 90
Мы видим, что под горизонтом нет препятствий для движения частиц, хотя и выглядит это несколько необычно. С другой стороны, сигналы извне не могут преодолеть горизонт. Происходит разрыв мировых линий световых лучей и падающих частиц. Самое время обсудить особенность на горизонте. Попытаемся понять, что на горизонте и в его окрестности происходит в реальности.
Придётся вернуться к истокам ОТО и вспомнить, что основной характеристикой пространства–времён и является его искривление (кривизна), которое определяется тензором кривизны Римана. Но вычисление компонент тензора Римана на горизонте и в его окрестности ничего необычного не обнаруживает. До горизонта, на горизонте и под ним кривизна не испытывает никаких разрывов, ведёт себя вполне плавно, постепенно увеличиваясь по мере приближения к центру, Дело в том, что координаты удалённого наблюдателя (а это координаты плоского пространства–времени), в которых и записано решение Шварцшильда, не вполне годятся для описания явлений в окрестности горизонта. Это значит, что нужно найти координаты, которые не имели бы этого дефекта.
Вспомним, что истинное время каждого наблюдателя для него самого всегда имеет одно и то же течение, в том числе и совсем близко к горизонту, А возможно, и на горизонте, почему нет? Поэтому в искомых координатах можно использовать собственное время свободно падающих (сопутствующих) наблюдателей как новую временную координату. Такие координаты для решения Шварцшильда, свободные от дефектов на горизонте, предложил в 1938 году бельгийский астроном и математик Жорж Леметр (1894–1966). В его сопутствующей системе отсчёта мировые линии частиц и световых лучей перестают испытывать разрыв на горизонте — они его свободно пересекают. Диаграмма в координатах Леметра обсуждается в Дополнении 5.