Как же называется эта книга? | страница 69



Условия задачи не позволяют определить, люблю ли я или не люблю Джейн.

118. Из условий задачи следует, что я должен любить и Еву, и Маргарет. Пусть P — высказывание «Если я люблю Еву, то я люблю и Маргарет». Нам известно:

1) Если P истинно, то я люблю Еву.

2) Если я люблю Еву, то P истинно. Решая предыдущую задачу, мы убедились: из (1) следует, что я люблю Еву. Значит, я люблю Еву. Тогда по условию (2) должно быть истинно высказывание P, то есть верно, что если я люблю Еву, то люблю и Маргарет. Но я люблю Еву. Следовательно, я люблю и Маргарет.

119. Я должен любить всех трех девушек. Доказать это можно разными способами. Приведем один из них.

По условию (3) я люблю и Диану, и Марцию, либо не люблю ни одну из них. Предположим, что я не люблю ни Диану, ни Марцию. Тогда по условию (1) я должен любить Сью. Значит, я люблю Сью, но не люблю Диану и не люблю Марцию, что противоречит высказыванию (2). Следовательно, не верно, что я не люблю ни Диану, ни Марцию. Значит, я люблю и Диану, и Марцию. Так как я люблю Диану, то по условию (4) я люблю и Сью. Итак, доказано, что я люблю всех трех девушек.

120. Я должен быть рыцарем. Если бы я был лжецом, то утверждения (1) и (2) были бы ложными. Предположим, что утверждение (2) ложно. Тогда я любил бы Линду, но я не любил бы Кати. Значит, Линду я любил бы, а это означает, что утверждение (1) было бы истинным. Поэтому невозможно, чтобы оба утверждения (1) и (2) были ложными. Следовательно, я не могу быть лжецом.

121. Сказать: «P ложно, если не Q» — то же самое, что сказать: «Если P, то Q». (Например, высказывание «Я не пойду в кино, если вы не пойдете со мной» эквивалентно высказыванию «Если я пойду в кино, то вы пойдете со мной».) Следовательно, «исправленный» вариант пословицы «Под приглядом котел не закипит, если за ним не приглядывать» эквивалентно утверждению «Если котел под приглядом закипит, то за ним приглядывают», а оно заведомо истинно, так как за котлом под приглядом, кипит он или не кипит, несомненно кто-то приглядывает.

122. Определить, кто такой A — рыцарь или лжец, невозможно. Однако сокровища должны быть на острове.

Для решения этой и других задач серии «Есть ли сокровища на этом острове?» установим раз и навсегда следующий основной принцип: если говорящий (либо рыцарь, либо лжец) высказывает утверждение «Я рыцарь в том и только в том случае, если P», то P должно быть истинным (независимо от того, кто такой говорящий — рыцарь или лжец).