Как же называется эта книга? | страница 19



Воспользуемся свойствами дизъюнкции и применим их к решению задачи. A высказывает сложное утверждение типа дизъюнкции: «Или я лжец, или B — рыцарь». Предположим, что A — лжец. Тогда высказанное им утверждение ложно. «Перевести» это можно так: неверно, что A — лжец и что B — рыцарь. Таким образом, если бы A был лжецом, то из этого следовало бы, что он не лжец, то есть мы пришли бы к противоречию: Отсюда мы заключаем, что A должен быть рыцарем.

Итак, мы установили, что A — рыцарь. Следовательно, его высказывание о том, что выполняется по крайней мере одна из двух альтернатив (1) A — лжец, 2) B — рыцарь), истинно. А поскольку первая альтернатива (А — лжец) ложна, то должна выполняться вторая альтернатива, то есть B — рыцарь. Таким образом, установлено, что A и B — оба рыцари.

30. Единственное здравое заключение, к которому можно прийти, состоит в том, что автор этой задачи не рыцарь. Действительно, ни рыцарь, ни лжец не могли бы высказать утверждения, приведенного в задаче. Действительно, предположим, что A — рыцарь. Тогда высказывание «А — лжец или два плюс два — пять» ложно, так как оба образующих его высказывания («А — лжец» и «два плюс два — пять») ложны. Но это означало бы, что рыцарь A высказал ложное утверждение, что невозможно. С другой стороны, если бы A был лжецом, то сложное высказывание «А — лжец или два плюс два — пять» было бы истинным, так как первое из входящих в него простых высказываний «А — лжец» истинно. Но тогда лжец A высказал бы истинное утверждение, что также невозможно.

Итак, условия задачи (так же как и условия задачи о всесокрушающем пушечном ядре и несокрушимом столбе) противоречивы. Следовательно, я, автор задачи, либо допустил ошибку, либо солгал. Смею уверить вас, что ошибки я не допускал. Отсюда вы с полным основанием приходите к выводу, что я не рыцарь.

31. Прежде всего заметим, что A должен быть лжецом. Действительно, если бы A был рыцарем, то из его высказывания следовало бы, что все трое лжецы. Но тогда A (по предположению, рыцарь) оказался бы лжецом, что невозможно. Следовательно, A — лжец. Но тогда его высказывание ложно и по крайней мере один из трех островитян A, B и C — рыцарь.

Предположим теперь, что B — лжец. Тогда A и B — оба лжецы, поэтому C должен быть рыцарем (так как по крайней мере один из трех островитян рыцарь). Это означает, что ровно один из трех островитян рыцарь, и, следовательно, высказывание B истинно, но это невозможно, так как любое высказывание лжеца не истинно. Отсюда мы заключаем, что B должен быть рыцарем.