Радость познания | страница 28



На выходе два значения А' и В' те же, что и на входе, а третий работает следующим образом. С' имеет то же значение, что и С, если только оба А и В не равны 1, в противном случае оно меняется, каким бы ни было С. Например, если С равно 1, С меняется на 0; если же С равно 0, то С меняется на 1 — но эти изменения происходят, если только оба входа А и В равны 1. Если вы поставите две эти схемы последовательно, вы увидите, что А и В проходят через схему, и если С не меняется, то С' равно С. Если же С меняется, оно меняется дважды, так что оно тоже остается постоянным. Следовательно, эта схема является обратимой, и информация не теряется.



Устройство, построенное целиком на таких схемах, выполняет вычисления при движении вперед. Но если в какой-то период времени происходит движение и вперед, и назад, в итоге оно продвигается вперед и все-таки работает правильно. Если в дальнейшем происходят рывки назад, а затем вперед, работа тем не менее остается скорректированной. Это похоже на то, как частица газа бомбардируется окружающими атомами. Такая частица обычно никуда не уходит, но при малейшем толчке, малейшей флуктуации возникает немного более вероятное движение по одному пути, а не по другому, и частица с медленным дрейфом смещается вперед и проходит от одного до другого конца, несмотря на существование броуновского движения. Так и наш компьютер будет вычислять при условии, что мы приложим дрейфовую силу, чтобы организовать вычисления. Хотя он и не выполняет вычисления плавно, он, во всяком случае, вычисляет и вперед, и назад и в конечном счете закончит работу. Как с частицей в газе, если мы ее слегка подтолкнем, она потеряет очень мало энергии, но зато ее путь от одного конца до другого займет достаточное время. Если мы спешим и подтолкнем частицу сильно — потеряем массу энергии. То же будет с компьютером. Если мы терпеливы и двигаемся медленно, мы можем заставить компьютер работать почти без потери энергии, с потерей, даже меньшей, чем кТ на один шаг — со сколь угодно малыми желаемыми потерями, — если располагаем достаточным временем. Но если вы спешите, вам приходится «транжирить» энергию, ясно, что энергия теряется на полное завершение вычислений компьютера в прямом порядке; потери энергии, умноженные на время, затраченное на выполнение вычислений, — величина постоянная.

Имея в виду эти возможности, давайте посмотрим, насколько малым можно сделать компьютер. Насколько велики будут размеры? Нам всем известно, что можно записать числа в двоичном базисе, как цепочки «битов», каждая цифра — единица или ноль. Каждый атом тоже можно занумеровать нулем или единицей, поэтому маленькой цепочки атомов будет достаточно для создания некоторого числа — один атом на каждый бит. (В действительности, так как атом может находиться более чем в двух состояниях, можно было бы использовать даже меньше атомов, но один на бит — вполне достаточно!) Итак, ради интеллектуального развлечения рассмотрим, можно ли построить компьютер, в котором записываются биты атомного размера, а бит, например, означает следующее: если спин атома направлен вверх, то это соответствует единице, а вниз — нулю. И тогда наш «транзистор», в котором в различных местах меняются биты, будет соответствовать некоторому взаимодействию между атомами, которые меняют свои состояния. Простейший пример — если что-то вроде 3-атомного взаимодействия будет фундаментальным элементом или схемой в таком компьютере. Очевидно, прибор не будет работать правильно, если мы сконструируем его в соответствии с законами, свойственными большим объектам. Мы должны использовать новые законы физики, квантово-механические законы, законы, присущие атомному движению