Радость познания | страница 116



Журналист: Вы действительно думаете, такое может случиться?

Фейнман: Да какая разница — я получил то, что получил. Нельзя сказать, что эксперимент всегда преподносит сюрприз, например, несколько лет назад я был весьма скептически настроен по отношению к калибровочным теориям[28], частично потому, что полагал, что сильные ядерные взаимодействия будут значительно больше отличаться от электродинамики, чем это выглядит сегодня. Я ждал тумана, но сейчас это похоже на хребты и долины.

Журналист: Физические теории по-прежнему будут абстрактными и математическими? Смог бы сегодня работать такой теоретик начала девятнадцатого века, как Фарадей, не обладающий высокой математической подготовкой, но с мощной физической интуицией?

Фейнман: Я бы сказал, что его шансы невелики. Во-первых, вам необходима математика просто для понимания того, что на настоящий момент сделано. Сегодня поведение субъядерных систем выглядит настолько странно по сравнению с системами, с которыми имели дело прежде и анализ которых казался абстрактным: чтобы понять лед, надо понять вещи, очень не похожие на лед. Модели Фарадея были механическими — пружинки, провода и напряженные модули в пространстве, — его образы были взяты из стандартной геометрии. Думаю, этот подход себя не исчерпал; однако все, что мы обнаружили в этом веке, резко отличается от знакомой нам физики, все еще очень неопределенно — и дальнейший прогресс возможен только в тандеме с математикой.

Журналист: Ограничит ли это число людей, которые могут внести вклад в науку, или хотя бы понять, что было сделано?

Фейнман: Или кто-нибудь разработает способ подачи материала, чтобы его было проще усваивать. Может быть, эти вопросы будут изучаться в более раннем возрасте. Это неверно, что современную математику считают слишком серьезной, трудной для понимания. Возьмите, например, компьютерное программирование; тщательно разработанная для этой цели логика — это один из способов думать, а мамы и папы говорят детям, что она доступна только профессорам. Теперь это часть повседневной работы, это способ жить. У детей есть компьютер, и он им интересен, они делают на нем удивительные, сумасшедшие вещи!

Журналист: С помощью курсов программирования, которые сейчас на каждом шагу!

Фейнман: Я не верю в то, что только избранные способны понять математику. В конце концов, математику придумали люди. У меня как-то был учебник по дифференциальному и интегральному исчислению, в котором говорилось: «Что может сделать один дурак, то может сделать и любой другой человек». Все, что мы успели узнать о природе, может казаться абстрактным и недоступным для понимания тому, кто этого не изучал, однако нашлись дураки, которые это изучили — а в следующем поколении уже все дураки станут понимать эти вопросы.