Математика для любознательных | страница 53
Странная задача на премию
Ряд лет тому назад в Берлине подвизался искусный счетчик, предлагавший публике такую задачу (переделываем ее на русский лад):
«Кто сможет уплатить 5 рублей, 3 рубля или 2 рубля полтинниками, двугривенными и пятаками, всего 20-ю монетами, - тому будет выдано наличными деньгами сто рублей».
Посетителям вручались необходимые монеты, - конечно, заимообразно. Но обещанная сотня рублей должна была остаться навсегда в руках счастливца, которому удалось бы решить задачу.
Разумеется, пол-Берлина потело над разрешением этой задачи (стояли как раз жаркие июльские дни), казавшейся не особенно трудной. Сто рублей хорошо пригодились бы всем, значит - стоит потрудиться. По мере того, как выяснялась бесполезность попыток, физиономии решавших вытягивались и розовые мечты о заманчивой награде испарялись. Надежды оказывались обманчивыми. Ловкий счетчик мог безбоязненно обещать в десять раз большую награду. Никто не в праве был бы на нее притязать, ибо задача требует невозможного.
Как в этом убедиться?
Нам не понадобится глубоко забираться в дебри алгебры, но все же не будем бояться х, у и z.
Рассмотрим сначала, можно ли уплатить требуемым образом пять рублей. Пусть для этого нужно х полтинников, у - двугривенных и z - пятаков. Сумма их должна составить 500 копеек, т. е.
50x + 20y + 5z = 500,
или, разделив на 5,
10x + 4y + z = 100.
Это легко осуществить на разные лады. Если, например, взять х = 8, то будем иметь
80 + 4y + z = 100,
или
4y + z = 20;
последнему уравнению можно удовлетворить, если принять z = 4, или 8, или 12, или 16 и, следовательно (при z = 4), 4у = 16, у = 4. Действительно, 8 полтинников, 4 двугривенных и 4 пятака составляют 500. Однако при этом не выполнено условие употребить в общей сложности 20 монет: мы употребили 8 + 4 + 4 = 16 монет. К нашему первому уравнению
10x + 4y + z = 100
необходимо, следовательно, присоединить второе
x + y + z = 20.
Соединяя их в одно, посредством вычитания второго из первого, мы освобождаемся от z и получаем
9х + 3у = 80;
теперь сразу становится очевидным, что не может быть таких целых чисел, которые удовлетворили бы этому уравнению. Потому что 9 раз х, каково бы ни было х, есть непременно число кратное 3; то же верно для числа 3у; следовательно, сумма 9х + 3у должна делиться без остатка на 3, то есть никак не может равняться 80.
Задача приводит к противоречивому требованию, и значит - ее решение невозможно.
Совершенно так же невозможно и составление требуемым образом сумм в 3 рубля и в 2 рубля. В первом случае, как каждый легко может убедиться, получается уравнение: