Как устроена машина времени? | страница 29



Говоря другими словами, это означает, что наше трехмерное пространство загибается в некое четвертое измерение, подобно тому как двухмерный лист бумаги, если его скрутить, загибается в третье измерение.

Последствия этой теории не до конца осознаны и в наши. дни. Пространство и время потеряли свой абсолютный характер и, как мы уже говорили, уступили место новому понятию «пространства-времени». Изменения, вносимые при этом в наши геометрические понятия, одновременно носят и количественный и качественный характер.

Количественный — потому, что отныне необходимо учитывать искривленность пространства и времени, а это предполагает, к примеру, что сумма углов треугольника не обязательно должна быть равна 180° (пространственная геометрия Лобачевского), а, прямые параллельные линии согласно той же геометрии в некоторых случаях могут и пересекаться.

Качественный — в основном потому, что становится возможным соединить две точки совершенно различными способами, не имеющими друг с другом пространственно-временной связи. Именно на этих неожиданных путях вселенские «червяки» и прогрызают, свои необыкновенные «дыры».

Чтобы яснее понять, что же знаменуют собой те «различные способы», которыми можно соединить две точки, обратимся к наглядному примеру, приводимому тем же Стивеном Хокингом в его новой книге «Короткая история времени».

Понаблюдаем за самолетом, летящим над пересечённой местностью, предлагает нам английский ученый. Его траектория в небе. — прямая линия в трехмерном пространстве. А вот тень его следует по изогнутой траектории — в зависимости от рельефа — в двухмерном пространстве.

Точно так же Земля движется вокруг Солнца по прямой траектории в четырехмерном пространстве (три классических пространственных измерения плюс четвертая координата — время). А вот в трехмерном пространстве, отображение нашей планеты перемещается по изогнутой траектории — эллипсу, примерно так же, как движется по какой-то кривой тень самолета.

Из всего этого следует, что при помощи «червячной дыры», проходящей через четвертое пространственное измерение, можно изрядно сократить себе путь как в пространстве, так и во времени.

Существование таких кратчайших путей было предсказано теоретиками еще в 1916 году, но только двадцать лет спустя, когда Эйнштейн совместно с Розеном взялся за анализ своих же-уравнений, была выдвинута достаточно проработанная гипотеза о неком «мосте», который может связывать две точки более коротким путем, чем общепринято. Эта гипотеза получила название «мост Эйнштейна-Розена».