Импрессионисты | страница 10
... В восьмом классе в жизнь ребят ворвался Гоголь - с "Ревизором" и "Вием". Лена Байкалова увидела в "Вие" - совсем иную, не пушкинскую, игру автора, героя и героини. Лена тогда писала: "Он (Гоголь - С.К.) как будто колдун. Он лепит из воска фигурки панночки, Хомы, Вия и другие, а потом прокалывает их иглой. Боль отражается на живом человеке. И он играет ими как хочет..."
(Е.Байкалова. "Повесть Гоголя "Вий" и мое восприятие этой повести", май, 1994)
И вот теперь, в десятом, пришли Тургенев, Толстой, Достоевский. Лена Михайловская в сочинении о художественном времени в романе Тургенева продолжает свою старую тему игры, борьбы, согласия и несогласия автора и его героев в произведении.
Особая погруженность этой темы в сферу пространственно-временных, почти математических, отношений автора и героя не случайно для Лены Михайловской. Пространство, время, математика интересуют ее и в чистом виде, скажем, в аксиомах стереометрии. Надо заметить, что ответы Лены на уроках геометрии иногда настолько нестандартны, что ставят учителя в тупик.
Приведу пример того, как Лена решает самые простые задачи. Меня будет интересовать не то, верно или неверно решает Лена ту или иную задачу (бывает верно - бывает нет), а то, как она размышляет о пространстве.
ЗАДАЧА. Верно ли, что любые 4 точки не лежат в одной плоскости?
РЕШЕНИЕ ЛЕНЫ. Я не вижу никакой разницы в предложениях "через четыре точки проходит одна плоскость" и "четыре точки лежат в одной плоскости" и поэтому я думаю (вопреки ответам в учебнике), что это высказывание верно. Если сузить количество вероятных точек до трех, и четвертую точку поместить над плоскостью этих трех точек или под ней, то, конечно же, утверждение верно! Но если все 4 точки внести в одну плоскость, то утверждение неверно.
4 точки - это "колеблющееся состояние", имеющее возможность иметь от одной до двух плоскостей.
ЗАДАЧА. Верно ли, что через любые три точки проходит плоскость и притом только одна?
РЕШЕНИЕ ЛЕНЫ. Первую часть выражения я неоднократно доказывала, а что касается существования только одной плоскости, то любые плоскости, проходящие через три точки, какие бы мы ни надевали, все равно будут совпадать с собственностью этих трех точек - их плоскостью. Можно очень глубоко уверенно сказать, что высказывание верно.
ЗАДАЧА. Точки А, В, С и Д не лежат в одной плоскости. Могут ли какие-то три из них лежать на одной прямой?
РЕШЕНИЕ ЛЕНЫ. Я предполагаю, что такое возможно. Эти три точки (т.е. уже прямая) лежат в своей плоскости, а оставшаяся занимает "свою" плоскость.