10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА | страница 81
Пытаясь разобраться в возникшей ситуации, многие ведущие математики вдруг задумались о проблемах и судьбе своей родной науки, и это беспокойство прекрасно передает высказывание одного из крупнейших немецких специалистов начала XX века: «Логика является гигиеной математической науки, позволяющей сохранять ее идеи здоровыми и сильными». Можно ли было ожидать, что математика в целом окажется столь же увечной и беззащитной, как геометрия?
Читатель может догадаться, что после работ Гёделя ответ оказался неутешительным для математики!
Возвращаясь к мыслителям и философам Древней Греции, напомним, что Аристотель создал дедуктивную логику в форме силлогизмов, т. е. утверждений типа: если все х имеют свойство у, а некое z относится к х, то z также обладает свойством;;. Один из самых известных силлогизмов применительно конкретно к Гёделю можно сформулировать в виде:
Все люди смертны (первая посылка).
Гёдель – человек (вторая посылка).
Гёдель – умрет (вывод).
(Российский читатель может вспомнить, что в повести Л. Н. Толстого «Смерть Ивана Ильича» с воспоминания об этом силлогизме главный герой начинает осознавать неотвратимость собственной смерти и размышлять о смысле жизни. – Прим. Перев)
Большинство людей рассуждают именно так, даже не вдумываясь в тонкости логики, что и является основой здравого смысла. Мы все понимаем, что логические размышления позволяют получать правильные выводы из правильных посылок, однако следует напомнить, что те же древние греки обнаружили один существенный недостаток дедуктивной логики, а именно: она «буксует» в некоторых довольно простых ситуациях (этот дефект является малозаметным и безвредным в обыденной речевой практике). Древнегреческие философы сформулировали и один из самых известных парадоксов такого типа: «Эпименид утверждает, что критяне лжецы». Фокус этой простой фразы состоял в том, что Эпименид сам был критянином, так что,если он прав, то критяне лгут и, следовательно, он… говорит правду и т. д. Не стоит ломать голову над этим высказыванием, поскольку оно действительно не может быть проанализировано логически. Другой, более современный вариант этого же парадокса выглядит следующим образом: «Назовем деревенским парикмахером человека, бреющего тех жителей деревни, которые не бреются сами. Кто бреет самого парикмахера?».
Знаменитый английский математик и философ Бертран Рассел (известный, кстати, своими чудачествами) долгое время занимался такими парадоксами и даже придумал им интересную форму, предложив написать на двух сторонах одного листа бумаги следующую фразу: «Утверждение, написанное на обороте этого листа, ошибочно» (лист бумаги с таким утверждением на обоеих сторонах можно переворачивать бесконечно). Позднее Рассел писал в автобиографии: «…конечно, взрослому человеку не стоило тратить время на такие тривиальные шутки, но что мне оставалось делать?» Рассел стремился продемонстрировать, что некоторые, весьма простые утверждения не могут быть оценены с точки зрения формальной логики.