10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА | страница 74



Как и полагается легенде, теорема обрела собственную историю. Сам Ферма доказал справедливость теоремы только для п = 4. Знаменитый математик, теолог и астроном Леонард Эйлер в начале XVIII века доказал теорему для п = 3, а уже к концу века удалось «покорить» числа п = 5 и п =7. В начале XIX века молодая француженка Софи Жермен смогла доказать справедливость теоремы для всех натуральных чисел, меньших 100 (в соответствии с обычаями своего времени она пользовалась при переписке мужским псевдонимом). Драматическим обстоятельствам ее жизни и выдающегося математического таланта была посвящена еще одна связанная с теоремой Ферма «математическая» постановка на Бродвее, названная «Доказательство», которая даже удостоилась весьма почетной премии Дэвида Осборна.

Самые блестящие математики занимались теоремой Ферма в течение трех веков, но можно с уверенностью заявить, что никому из них не удалось обнаружить то гипотетическое доказательство, которое, возможно, мгновенно угадал Ферма, когда записал на полях книги свою фразу о «…поистине чудесном доказательстве».

Английский математик Эндрю Уайлс позднее вспоминал, как он в десятилетнем возрасте впервые познакомился с теоремой Ферма по книжке из сельской библиотеки: «…она казалась удивительно простой…, но в книге утверждалось, что ее никто не может доказать в течение 300 лет. Мне сразу захотелось найти решение». Проблема выглядит исключительно простой: поскольку число 2 ничем, собственно, не выделяется в бесконечном ряду других натуральных чисел, совершенно непонятно, почему только это значение может создавать пифагоровы триады чисел. Долгое время (включая и время, затраченное на серьезную академическую деятельность) жизнь не позволяла Уайлсу заняться доказательством полюбившейся теоремы постоянно и целенаправленно. Одна из причин, кстати, состояла в том, что ни один серьезный студент-математик не мог себе даже позволить открыто заявить коллегам об интересе к считавшейся давно недоказуемой теореме Ферма (представьте себе, как отнесутся сегодня астрофизики к аспиранту, который захочет доказать им, что красного смещения не существует). Поэтому Уайлс сначала весьма благоразумно защитил в Кембридже докторскую диссертацию на классическую тему «применение теории чисел для анализа эллиптических кривых», перебрался в Принстонский университет (США) и лишь затем объявил о своем желании всерьез заняться проблемами и задачами, связанными с теоремой Ферма.