10 ЗАПОВЕДЕЙ НЕСТАБИЛЬНОСТИ. ЗАМЕЧАТЕЛЬНЫЕ ИДЕИ XX ВЕКА | страница 73
Мы знаем, что в математике и физике существуют и другие, более сложные виды геометрий, но и для них справедливы численные соотношения теоремы Пифагора. В теории чисел не имеют значения ни скорость движения космического аппарата, ни квантовая неопределенность в поведении электронов человеческого мозга, занятого решением этой задачи, так что независимо от всех физических обстоятельств и соображений соотношение а + b2 = с остается справедливым для некоторых комбинаций положительных целых чисел (такие числа называют натуральными).
По-видимому, размышляя о незыблемости этой великой теоремы, Ферма случайно задал себе простой и даже напрашивающийся вопрос: если математическое соотношение справедливо для квадратов некоторых натуральных чисел, то должно ли оно выполняться для кубов и/или более высоких степеней каких-либо чисел? Существует ли, например, комбинация вида а9 + b9 = с9? Другими словами, справедлива ли теорема Пифагора вообще, в виде аn+ bn= сn для некоторых комбинациё чисел при п › 2?
Нам остается лишь поверить, что юрист Ферма сразу вынес свой вердикт и нашел безапелляционный ответ «Jamaisl». Никогда! Никоим образом! Ни одно положительное целое число (от 3 до о о) не может быть показателем степени, образующим пифагоровы числа. Единственным доказательством этого утверждения остается пометка самого Ферма на полях книги: «Я нашел поистине чудесное доказательство…», но почти никто из математиков не верит в то, что Ферма действительно мог его получить. В течение нескольких десятков лет после упомянутой публикации нескольким выдающимся ученым удалось доказать теорему Ферму для некоторых групп натуральных чисел (иногда эти группы были весьма внушительны по объему), но общее доказательство, справедливое сразу для всех положительных целых чисел, оставалось недоступным, так что число самых талантливых математиков, вовлекаемых в странное и необычное соревнование, постоянно увеличивается.