Энциклопедия лучших игр со словами и цифрами | страница 58



Четырехзначное число

Условие

Назовите четырехзначное число, в котором первая цифра – треть второй, третья – сумма первых двух и последняя – утроенная вторая?

Ответ

Это число – 1349.

Плюс и минус

Поставьте вместо звездочек знаки плюс и минус между цифрами так, чтобы получилось верное выражение: 0 * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 = 1.

Ответ

Знаки плюс и минус следует поставить следующим образом: 0 + 1 + 2 – 3 – 4 + 5 + 6 – 7 – 8 + 9 = 1.

Алекс – Юстасу

Условие

Штирлиц должен передать в Центр набор из четырех секретных натуральных чисел А, В, С, D. Для большей секретности он отправил набор чисел А + В, А + С, А + D, В + С, В + D неизвестно в каком порядке.

Центр, получив от Штирлица числа 13, 15, 16, 20, 22, расшифровал сообщение и нашел требуемый набор из четырех секретных натуральных чисел. Какие числа Штирлиц должен был передать в Центр?

...

Подсказка: (A + C) + (B + D) = (A + D) + (B + C).

Ответ

Это числа – 6, 7, 9, 13. Поскольку (А + С) + (В + D) = (А + D) + (В + С), а из попарных сумм чисел 13, 15, 16, 20, 22 совпадают только 13 + 22 = 15 + 20 = 35, то А + В = 16, С + D = 19. Поскольку А и В одинаковой четности, то получаем систему двух уравнений с двумя неизвестными:

А + В = 16

|A – B| = 2.

Решая систему, находим два числа 7 и 9 (то есть А = 7, В = 9 или А = 9, В = 7). Далее легко находим два недостающих числа: 6 и 13.

Рыцари и лжецы

Условие

Путешественник приехал на остров, каждый из 100 жителей которого или лжец, который всегда обманывает, или рыцарь, который всегда говорит правду. При этом среди жителей острова есть хотя бы один лжец.

Лжецы решили лгать таким образом, чтобы каких бы 50 жителей путешественник не собирал вместе, присутствующие среди них лжецы всегда отвечали на вопрос о числе рыцарей среди собранных туземцев так, чтобы путешественник получал один и тот же набор из 50 ответов.

Какое наибольшее число рыцарей могло быть на острове?

...

Подсказка: набор ответов должен выглядеть правдоподобно.

Ответ

Решая эту головоломку, нужно рассуждать следующим образом: рыцарей на острове менее 50, иначе путешественник, выбрав всех рыцарей, получил бы 50 ответов «пятьдесят», а, выбрав одного лжеца и 49 рыцарей, услышал бы иной набор ответов.

Получается, что лжецов на острове не менее 50 человек.

Поскольку набор ответов должен выглядеть правдоподобно, в наборе ответов должен быть 1 ответ «один», 2 ответа «два», 3 ответа «три», …, 9 ответов «девять» и еще 5 неправдоподобных ответов. Из этого можно сделать вывод, что на острове может быть не больше 9 рыцарей.