Энциклопедия лучших игр со словами и цифрами | страница 36
Соблюдая такую стратегию, на n-ом ходу следует выбрать такой отрезок, чтобы в нем не было ни одной точки вида g/n, где g – целое число. При любой игре соперника вы можете выбирать отрезки согласно изложенным выше правилам.
А теперь попробуем доказать, что в пересечении всех названных отрезков не может быть ни одного рационального числа. Итак, пусть рациональное число s/d (для некоторого целого числа s и натурального числа d) лежит в пересечении всех отрезков. Но это противоречит тому, что игрок на d-ом ходу назвал отрезок, не содержащий рациональных чисел, представленных в виде дроби со знаменателем d.
Синие и зеленые точки
Эта игра довольно сложная. В нее следует играть вдвоем. Для игры потребуется лист бумаги, а также ручки с синим и зеленым стержнями.
Условие
Игроки ходят по очереди. Первый ставит на листе бумаги зеленую точку, второй ставит на свободные места 10 синих точек. После этого первый игрок опять ставит на свободное место зеленую точку, второй ставит на свободные места 10 синих точек и т. д.
Первый игрок считается победителем, если 3 зеленые точки образуют правильный треугольник. Если второй ему помешает, то, соответственно, выигрывает он.
Подсказка: первому игроку следует ставить до определенного момента точки на одной прямой.
Решение
Предположим, первый игрок ставит точки на одной прямой, заботясь только о том, чтобы не попасть в уже поставленную точку (это всегда возможно, поскольку на прямой бесконечно много точек).
Если уже поставлено s зеленых точек на прямой, прибавление еще одной точки на этой прямой только увеличивает количество мест, на которые можно поставить зеленую точку так, чтобы с уже поставленными она образовала правильный треугольник.
Итак, число мест, куда можно поставить точку, чтобы получился правильный треугольник, после постановки (s + 1)-й зеленой точки равно сумме арифметической прогрессии 2 + 4 + 6 + … + 2s = s(s + 1).
Число синих точек после этого хода станет равным 10(s + 1), что при s > 10 уже меньше, чем число возможных мест для зеленой точки, создающей правильный треугольник.
Учитывая все сказанное выше, можно сделать вывод, что у первого игрока всегда есть возможность после 10-го хода одержать победу.
Угадывание чисел
Это очень сложная головоломка, в которую следует играть вдвоем. При этом соперники должны обладать математическими способностями и определенными знаниями.
Условие
Один из игроков задумывает 10 натуральных чисел: s1, s2, s3, …, s10. Соперник старается угадать их, задавая определенные вопросы. Разрешается задавать вопросы следующего типа: чему равна сумма b1s1 + b2s2 + … + b10s10, где b1, b2, …, b10 – некоторые натуральные числа?