Удивительные открытия | страница 9



Учение о гидростатике Архимед развил в своем труде «О плавающих телах», в котором было сказано:

...

«Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными, и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим».

Основываясь на этом, Архимед математически доказал, что:

...

«Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости, и не будут двигаться вниз.

Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости.

Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной [части тела], имел вес, равный весу всего тела.

Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.

Тела, более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела».

Последнее утверждение фактически и содержит общеизвестный закон Архимеда, важный закон гидростатики, согласно которому каждое тело, погруженное в жидкость, теряет столько своего веса, сколько весит вытесненная им жидкость (на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости).

Отметим, что знаменитое восклицание «Эврика!» («Я нашел!») относится к первому практическому применению этого самого закона Архимеда.

Согласно легенде, однажды к Архимеду обратился недоверчивый правитель Сиракуз, подозревавший своего ювелира в обмане. Он попросил проверить, соответствует ли вес изготовленной для него золотой короны весу отпущенного им на нее золота.

Рассказ об этом приведен у древнеримского автора второй половины I века до н. э. Марка Витрувия Поллиона в его трактате «Десять книг об архитектуре»:

...

«Исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, – один из золота, другой из серебра. Сделав это, он наполнил водой сосуд до самых краев и опустил в него серебряный слиток, и вот, какой объем слитка был погружен в сосуд, соответственное ему количество вытекло воды. Вынув слиток, он долил в сосуд такое количество воды, на какое количество стало там ее меньше, отмеряя вливаемую воду секстарием [1] , чтобы, как и прежде, сосуд был наполнен водой до самых краев. Так отсюда он нашел, какой вес серебра соответствует какому определенному количеству воды.