Зеркальные болезни. Рак, диабет, шизофрения, аллергия | страница 71



Это одна из наиболее важных информационных систем во Вселенной, одна из основных моделей творения Бытия. Куб Метатрона содержится в четырех из пяти стереометрических копий Платоновых тел. Критерием Платоновых тел является равенство всех граней, поверхностей и углов, а также то, что все их вершины должны вписываться в сферу. Известны только пять геометрических тел, удовлетворяющих этим критериям. Эти фигуры были названы в честь Платона, хотя ими на двести лет раньше пользовался Пифагор, назвав их идеальными геометрическими телами. Уже в «Началах Евклида» найдено огромное количество соотношений, подтверждающих замечательный факт, что именно золотая пропорция является главной пропорцией додекаэдра и икосаэдра. Согласно комментатору «Начал Евклида» Проклу, Евклид считал венцом всех тринадцати книг своих «Начал» предложенные им способы построения пяти Платоновых тел — и именно эту важнейшую математическую информацию он поместил в последнюю, тринадцатую книгу. Тела Платона — это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Это — правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Тетраэдр — четырехгранник, все грани которого треугольники, т. е. треугольная пирамида. Правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. Куб или правильный гексаэдр — правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. Октаэдр — восьмигранник, тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. Додекаэдр — двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников. Икосаэдр — двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников. Куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен, ведь правильных многоугольников на плоскости бесконечно много! Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более, что эти формы имеют природные кристаллы, например: куб-монокристалл поваренной соли (NaCl), октаэдр-монокристалл алюмокалиевых квасцов (KAl(SO