Физика на каждом шагу | страница 89



И действительно, когда пятнышко покрыло конец папиросы и продержалось там с минуту, она затлелась, и от нее пошел синеватый дымок.

– Ну, вот мы и зажгли льдом, – сказал брат, беря тлеющую папиросу в рот. – Так можно хоть на самом полюсе зажечь костер без спичек, были бы дрова!

Три пуговицы

Положите рядом три одинаковые пуговицы или монеты. То, что я сейчас предложу вам сделать с ними, кажется с первого взгляда очень простым. Тем неожиданнее будет то, что вы узнаете потом. Вот эта задача: выдвиньте среднюю пуговицу (монету) вниз настолько, чтобы между нею и каждою из остальных двух был промежуток, равный расстоянию между наружными краями боковых пуговиц.

Вы должны полагаться при этом только на свой глаз и не прибегать к помощи циркуля и бумажки. Большой точности от вас не требуется; если ошибетесь на сантиметр, то задачу будем считать решенной верно.


Рис. 91. Кажущееся (неправильное) решение задачи с тремя монетами


Ваше решение, вероятно, было приблизительно такое, как на рис. 91. Оно как будто вполне отвечает задаче, не правда ли? Но попробуйте измерить расстояния бумажкой или циркулем. Окажется, что вы ошиблись чуть не в полтора раза!

На рис. 92 показано правильное расположение пуговиц (монет), несмотря на то, что для нашего глазомера оно кажется, совсем неправильным.


Рис. 92. Правильное решение задачи с монетами


Чем крупнее кружки, тем обман зрения поразительнее. Опыт удается и в том случае, если взять неодинаковые кружки, например, монеты разного достоинства.

Четырехугольники

Вы признать затруднитесь квадратами четырехугольные фигуры на рис. 93: бока у одной вдавлены, у другой выпуклы.

Так судит ваш глаз. Но он ошибается: все три четырехугольника – геометрически правильный квадраты.



Рис. 93. Прямые ли стороны у этих четырехугольников?


Причина обмана зрения – линейчатый фон, на котором начерчены эти фигуры.

Что больше?

Рассмотрите рис. 94. На нем выделены две параллельные линии – ab и cd. Если у вас спросят, какая длиннее, вы без колебаний скажете, что первая, ab. Но смерьте их бумажкой: вы убедитесь, что обе одинаковой длины! Причина обманчивого неравенства – окружающий фон. Первая линия изображает высоту комнаты, вторая – высоту шкафа. А так как шкаф явно ниже комнаты, то мы и считаем линию cd короче ab.


Рис. 94


Вот обман зрения в том же роде: на рис. 95 левая картинка кажется больше правой. Но скопируйте их и переставьте правую на место левой. Вы ожидаете, что теперь будет больше правая картинка. Оказывается, что и на этот раз крупнее левая. На самом же деле картинки в точности одинаковы по величине; все дело в обмане зрения.