Вокруг Света 2008 № 04 (2811) | страница 13
Считается, что наиболее эффективно обогащают Вселенную тяжелыми элементами звезды с массами от 12 до 25 солнечных. Их железное ядро окружает мощная кремниево-кислородная оболочка, которая после сброса дает элементы от натрия до германия (включая железо). В более массивных звездах слишком много вещества, состоящего из тяжелых элементов, проваливается внутрь черной дыры, и наружу ускользают только достаточно легкие. Звезды поменьше, с массами в 8—12 солнечных, не обладают такой оболочкой, и поэтому элементов группы железа в них образуется мало. Зато... появляются много более тяжелые элементы.
Свежий нейтринный ветер
Когда чудовищные силы гравитации сжимают уставшее сопротивляться ядро звезды, ядра атомов буквально спрессовываются друг с другом. Носящиеся между ними электроны, оказавшись в ловушке, вдавливаются в ядра и сливаются с протонами, превращая их в нейтроны. При этом выделяются нейтрино — трудноуловимые частицы, которые обычно легко пронизывают всю толщу звезды и уходят в космос. Однако в момент образования нейтронной звезды их становится так много, что пренебрегать ими уже нельзя.
Возникает так называемый нейтринный ветер. Подобно тому как давление света в массивных звездах приводит к истеканию вещества в виде звездного ветра, нейтрино увлекают протоны и нейтроны. Даже если вначале нейтронов было не слишком много, они появляются в результате реакций между протонами и нейтрино. В веществе образуется избыток нейтронов, которые могут проникать в ядра, формируя все более и более тяжелые изотопы. Из-за огромного потока нейтронов ядра ими буквально переполняются, отчего становятся крайне нестабильными и начинают очень быстро избавляться от избыточной нейтронизации — нейтроны в них превращаются в протоны. Но едва только это происходит, как новые волны нейтронов опять доводят ядра «до предела».
Взрыв сверхновой происходит несимметрично, что сильно затрудняет его компьютерное моделирование. Фото SPL/EAST NEWS
Вся эта вакханалия, длящаяся лишь несколько секунд, получила название r-процесса (от англ. rapid — «быстрый»). Ее итогом становятся ядра всех масс вплоть до самых тяжелых. Например, для выявления последствий r-процесса часто ищут следы такого редкого элемента, как европий, поскольку он, вероятнее всего, рождается только с помощью этого механизма. В r-процессе образуются, например, платина и актиноиды — тяжелые радиоактивные элементы, к которым относится, в частности, уран. Относительное содержание изотопов последнего, равно как и тория, часто используют для оценки возраста звезд.