Математика в занимательных рассказах | страница 40
— А разве я говорил, что легко будет отыскивать в библиотеке все нужное? Я только утверждал, что можно в точности определить число томов нашей универсальной библиотеки, где наряду со всевозможными нелепостями будет также вся осмысленная литература, какая только может существовать.
— Ну, подсчитай же, наконец, сколько это составит томов, — сказала хозяйка. — Чистый листок бумаги, я вижу, скучает в твоих пальцах.
— Расчет так прост, что его можно выполнить и в уме. Как составляем мы нашу библиотеку? Помещаем сначала однократно каждую из сотни наших литер. Затем присоединяем к каждой из них каждую из ста литер, так что получаем сотню сотен групп из двух букв. Присоединив в третий раз каждую литеру, получаем 100 × 100 × 100 групп из трех знаков, и т. д. А так как мы должны заполнить миллион мест в томе, то будем иметь такое число томов, какое получится, если взять число 100 множителем миллион раз. Но 100 = 10 × 10; поэтому составится то же, что и от произведения двух миллионов десятков. Это, проще говоря, единица с двумя миллионами нулей. Записываю результат так: десять в двухмиллионной степени —
10>2 000 000
Профессор поднял руку с листком бумаги.[29]
— Да, вы, математики, умеете-таки упрощать свои записи, — сказала хозяйка. — Но напиши-ка это число полностью.
— О, лучше и не начинать; пришлось бы писать день и ночь две недели подряд, без передышки. Если бы его напечатать, оно заняло бы в длину четыре километра.
— Уф! — изумилась племянница. — Как же оно выговаривается?
— Для таких чисел и названий нет. Никакими средствами невозможно сделать его хоть сколько-нибудь наглядным, — настолько это множество огромно, хотя и безусловно конечно. Все, что мы могли бы назвать из области невообразимо больших чисел, исчезающе мало рядом с этим числовым чудовищем.
— А если бы мы выразили его в триллионах? — спросил Буркель.
— Триллион — число внушительное: единица с 18 нулями. Но если ты разделишь на него число наших томов, то от двух миллионов нулей отпадает 18. Останется единица с 1 999 982 нулями, — число столь же непостижимое, как и первое. Впрочем… — профессор сделал на листке бумаги какие-то выкладки.
— Я была права: без письменного вычисления не обойдется, — заметила его жена.
— Оно уже кончено. Могу теперь иллюстрировать наше число. Допустим, что каждый том имеет в толщину 2 сантиметра и все тома расставлены в один ряд. Какой длины, думаете вы, будет этот ряд?
Он с торжеством взирал на молчащих собеседников.