Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 96
Чтобы устранить автокорреляцию в остатках, необходимо изменить спецификацию статистической модели. С этой целью попробуем использовать для прогнозирования курса доллара модель авторегрессии со скользящим средним в остатках ARMA(1,1) (см. формулу (6.2)). Однако ввести в EViews эту формулу необходимо в следующем виде:
log(USDollar) с log(USDollar(-l)) МА(1), (6.8)
где с — константа;
log(USDollar(-l)) — логарифм от переменной с лагом в один месяц;
МА(1) — представляет собой скользящую среднюю первого порядка.
При этом следует иметь в виду одну тонкость: в опциях диалогового мини-окна EQUATION ESTIMATION (оценка уравнения) по умолчанию устанавливается параметр BACKCAST МА TERMS (рекурсивное вычисление предыдущей ошибки в МА-процессе). В этом случае значение предыдущей ошибки (отклонения прогноза от фактического курса доллара в прошлом месяце) для точечного прогноза по первому наблюдению находится рекурсивным методом (см. ввод этой опции на рис. 6.5).
Если в параметре BACKCAST МА TERMS убрать «галочку», значение прошлой ошибки в точечном прогнозе для первого наблюдения приравнивается нулю, поскольку оно на тот момент отсутствует. В свою очередь в случае применения в статистической модели скользящей средней второго порядка прошлые ошибки при прогнозировании не только первого, но и второго наблюдений либо приравниваются нулю, либо вычисляются рекурсивным методом.
В результате ввода в диалоговое мини-окно EQUATION ESTIMATION формулы (6.7) получается следующий вывод данных (табл. 6.6). Причем все полученные коэффициенты в этом уравнении у нас получились статистически значимыми (все выделенные жирным шрифтом значения Prob. меньше 0,05). Кстати, в таблице появляется информация о рекурсивном вычислении предыдущей ошибки относительно июня 1992 г. — Backcast: 1992М06. После замены буквенных обозначений вычисленными коэффициентами получилось следующее уравнение регрессии со скользящей средней:
log(USDollar) = 0,105219 + 0,968257 × log(USDollar(-l)) + 0,253616 e>t-1, (6.9)
где е>t->1 — прошлая ошибка (отклонение фактического курса доллара от его прогноза), которая в уравнении (6.8) представлена скользящей средней МА(1).
К сожалению, в отличие от формулы (6.5) формулу (6.9) нельзя путем потенцирования привести к исходному временному ряду, что обусловлено применением в этой статистической модели скользящей средней, рассчитанной применительно к остаткам, полученным от логарифмического ряда. Поэтому интерпретация формулы (6.9) будет достаточно затруднительной, поскольку мы вынуждены ее дать относительно логарифмического, а не исходного временного ряда.