Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 4
Как известно, в статистической литературе принято выделять три вида случайных процессов: строго стационарные, слабо стационарные и нестационарные процессы.
Случайный процесс, образующий временнóй ряд Х>1, Х>2, Х>3,…, X>t(буква X обозначает переменную, содержащую определенную рыночную информацию, например, по динамике курсов валют, а цифры 1,2,3…., t — моменты времени), называется строго стационарным (или, как еще говорят, стационарным в узком смысле), если совместное распределение вероятностей всех переменных Х>1, Х>2, Х>3,…, X>t точно такое же, как и для наблюдений Х>1+T, Х>2+T, Х>3+T,…, X>t+T(где T=t>2-t>1 — временнóй лаг). Иначе говоря, свойства строго стационарного временного ряда не меняются при изменении начала отсчета времени.
Однако в сфере экономики, в том числе в сфере финансовых и валютных рынков, строго стационарные процессы отсутствуют, а потому для нас гораздо больший интерес представляют так называемые слабые стационарные процессы, или стационарные процессы в широком смысле. Под слабым стационарным процессом понимается случайный процесс, у которого среднее и дисперсия — независимо от рассматриваемого периода времени — имеют постоянное значение, а автоковариация зависит только от длины лага между исследуемыми переменными.
Напомним читателям, что среднее значение временного ряда можно найти по следующей формуле:
где п — количество членов во временнoм ряде.
Дисперсия (мера разброса случайной величины, например, отклонения курса доллара от его среднего значения, или, как еще говорят, от его математического ожидания) временного ряда представляет собой средний квадрат отклонений переменной (случайной величины) от ее среднего значения.
Соответственно дисперсия находится по следующей формуле:
В Excel дисперсию можно найти, пользуясь функцией ДИСПР (если исходные данные представляют собой генеральную совокупность) или функцией ДИСП (если данные представляют собой выборку).
Для оценки тесноты и направления связи между переменными одного временного ряда с определенным лагом используется автоковариация. В частности, автоковариация между значениями X, и X>t_>T, отделенными друг от друга интервалом в Т единиц времени, называется автоковариацией с лагом (задержкой) Т, которая находится по следующей формуле:
Автоковариацию, согласно формуле (1.3), в Excel можно найти с помощью функции КОВАР, которая возвращает величину ковариации. Причем последнюю называют автоковариацией в том случае, когда ее используют для оценки тесноты и направления связи между переменными одного временного ряда с определенным лагом — например, с лагом минус один месяц. Доказано, что для независимых переменных