Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 23



2,71828) как от независимой переменной х — порядковый номер месяца, так и от зависимой переменной у — курс доллара. В Excel для этих целей можно воспользоваться функцией LN. Далее поступаем в полном соответствии с алгоритмом действий № 3, а данные, полученные после решения уравнения регрессии, занесем в табл. 2.8.

Согласно алгоритму действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов», проведем проверку статистической значимости этого уравнения регрессии. При этом выделим в табл. 2.8 все важнейшие пункты жирным шрифтом. В результате мы приходим к выводу, что у нас получились статистически значимыми уравнение регрессии и его коэффициенты как при 95 %-ном, так и 99 %-ном уровне надежности. Правда, поскольку уравнение регрессии мы решили относительно натуральных логарифмов, взятых от исходных данных, то в результате оно приобрело следующий вид:

LnY = -3,1154 + 1,28073 lпХ

Согласно последнему уравнению регрессии, прогноз курса доллара рассчитывается на основе логарифмов, взятых от исходных данных. Например, прогноз относительно апреля 2010 г. вычисляется следующим образом:

LnY = -3,1154 + 1,28073 × 5,370638 = 3,762939,

где 5,370638 = ln (215) — натуральный логарифм от порядкового номера апреля 2010 г. — 215.

Отсюда находим (в Excel потенцирование натуральных логарифмов производится с помощью функции ЕХР), что прогноз курса доллара на апрель 2010 г. равен

Y = ЕХР (3,762939) = 43,07482.

После проведения соответствующих преобразований уравнение регрессии приобретет следующий вид:

Y = ЕХР (-3,1154 + 1,28073 lnХ) = 0,044361 × X^1,28073.

С помощью последнего уравнения регрессии можно делать расчет прогнозов непосредственно от исходных данных, а не от их натуральных логарифмов. В результате можно получить следующий прогноз курса доллара на апрель 2010 г.:

Y =0,044361 × 215^1,28073,

где 215 — порядковый номер апреля 2010 г. (июнь 1992 г. — 1).

Несмотря на то что коэффициент детерминации у степенного уравнения регрессии выше, чем у линейного, однако, например, относительно апреля 2010 г. прогноз по этому уравнению регрессии весьма сильно отклоняется от фактического курса доллара, как впрочем, и во многих других случаях. Судя по табл. 2.9, с января 2009 г. по апрель 2010 г. отклонения от прогноза (остатки), сделанного по уравнению регрессии Y>расч = 0,044361 — X^1,28073, колебались в диапазоне от -3,7954 руб. до -13,7862 руб., что свидетельствует о невысокой точности этой прогностической модели.