Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 13



Параметры, представленные в табл. 2.2, характеризуют уровень аппроксимации фактических данных, полученный с помощью уравнения регрессии. Так, параметр МНОЖЕСТВЕННЫЙ R обозначает коэффициент множественной корреляции R, который характеризует тесноту связи между результативным признаком Y и факторами переменных Д, Х>2…., Х>n. Этот коэффициент изменяется в пределах от 0 до 1, причем чем ближе к 1, тем теснее корреляционная связь между переменными, включенными в уравнение регрессии. Коэффициент множественной корреляции равен квадратному корню, извлеченному из коэффициента детерминации R>2, который также приводится в регрессионной статистике. Коэффициент множественной корреляции R находят по формуле:

Зная величину коэффициента корреляции R, можно дать качественную оценку силы связи между зависимой и независимыми переменными, включенными в уравнение (2.5). С целью классификации силы связи обычно используют шкалу Чеддока (табл. 2.1).

Если между переменными существует функциональная связь, то R= 1, а если корреляционная связь отсутствует, то R = 0. Поскольку в табл. 2.2 коэффициент множественной корреляции Нравен 0,8456, то, согласно шкале Чеддока, связь между переменными, включенными в уравнение регрессии, можно считать высокой. Следует также заметить, что если коэффициент множественной корреляции меньше 0,7, то это означает, что величина коэффициента детерминации R>2 будет меньше 50 %, а потому регрессионные модели с таким коэффициентом детерминации не имеют большого практического значения.

Однако самым важным является другой параметр регрессионной статистики — R-КВАДРАТ (в табл. 2.2 он выделен шрифтом), обозначающий коэффициент детерминации R>2. Коэффициент детерминации R>2 характеризует долю дисперсии результативного признака У, объясняемую уравнением регрессии, в общей дисперсии результативного признака. Коэффициент детерминации R>2 находится по следующей формуле:

Коэффициент детерминации R>2, как и коэффициент множественной корреляции R, изменяется в пределах от нуля до единицы. Если R>2 равен единице, то доля объясненной дисперсии составляет 100 %, а следовательно, связь между зависимой переменной Y и независимыми переменными Х>1, Х>2…., X>1 носит функциональный характер. В том случае, когда R>2 равен нулю, какая-либо связь между переменными в этом уравнении регрессии отсутствует.

Величина коэффициента детерминации R>2 является одним из важнейших критериев при оценке качества уравнения регрессии. Так, при выборе из нескольких уравнений регрессии предпочтение (при прочих равных условиях) отдается тому, у которого коэффициент детерминации