Учебник по Haskell | страница 64
(p - a) * (p - b) * (p - c))
Слова let и in – ключевые. Выгодным отличием let-выражений является то, что они являются обычными
выражениями и не привязаны к определённому месту как where-выражения. Они могут участвовать в любой
части обычного выражения:
square a b c = let p = (a + b + c) / 2
in
sqrt ((let pa = p - a in p * pa) *
(let pb = p - b
pc = p - c
in
pb * pc))
В этом проявляется их принадлежность композиционному стилю. let-выражения могут участвовать в
любом подвыражении, они также группируются скобками. А where-выражения привязаны к уравнениям в
определении функции.
Также как и в where-выражениях, в let-выражениях слева от знака равно можно проводить декомпозицию
значений.
pred :: Nat -> Nat
pred x = let (Succ y) = x
in
y
Определим функцию фильтрации списков через let:
filter :: (a -> Bool) -> [a] -> [a]
filter
p
[]
= []
filter
p
(x:xs) =
let rest = filter p xs
in
if p x then x : rest else rest
4.2 Декомпозиция
Декомпозиция или сопоставление с образцом позволяет выделять из составных значений, простейшие
значения с помощью которых они были построены
pred (Succ x) = x
и организовывать условные вычисления которые зависят от вида поступающих на вход функции значений
not True
= False
not False = True
Сопоставление с образцом
Декомпозицию в декларативном стиле мы уже изучили, это обычный случай разбора значений в аргу-
ментах функции. Рассмотрим одну полезную возможность при декомпозиции. Иногда нам хочется провести
декомпозицию и дать псевдоним всему значению. Это можно сделать с помощью специального символа @.
Например определим функцию, которая возвращает соседние числа для данного числа Пеано:
beside :: Nat -> (Nat, Nat)
beside
Zero
= error ”undefined”
beside
x@(Succ y) = (y, Succ x)
В выражении x“(Succ y)@ мы одновременно проводим разбор и даём имя всему значению.
Декомпозиция | 61
case-выражения
Оказывается декомпозицию можно проводить в любом выражении, для этого существуют case-
выражения:
data AnotherNat = None | One | Two | Many
deriving (Show, Eq)
toAnother :: Nat -> AnotherNat
toAnother x =
case x of
Zero
-> None
Succ Zero
-> One
Succ (Succ Zero)
-> Two
_
-> Many
fromAnother :: AnotherNat -> Nat
fromAnother None
= Zero
fromAnother One
= Succ Zero
fromAnother Two
= Succ (Succ Zero)
fromAnother Many
= error ”undefined”
Слова case и of – ключевые. Выгодным отличием case-выражений является то, что нам не приходит-
ся каждый раз выписывать имя функции. Обратите внимание на то, что в case-выражениях также можно
пользоваться обычными переменными и безымянными переменными.